Fast ions and hot electrons in the laser–plasma interaction

Data on the emission of energetic ions produced in laser–matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x‐ray‐determined hot e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Fluids; (United States) 1986-08, Vol.29 (8), p.2679-2688
Hauptverfasser: Gitomer, S. J., Jones, R. D., Begay, F., Ehler, A. W., Kephart, J. F., Kristal, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2688
container_issue 8
container_start_page 2679
container_title Phys. Fluids; (United States)
container_volume 29
creator Gitomer, S. J.
Jones, R. D.
Begay, F.
Ehler, A. W.
Kephart, J. F.
Kristal, R.
description Data on the emission of energetic ions produced in laser–matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x‐ray‐determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady‐state spherically symmetric fluid model with classical electron heat conduction, (2) a steady‐state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasnex hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasnex code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities).
doi_str_mv 10.1063/1.865510
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_865510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_865510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e120aee4fa3e31bc7183707baca010953f8062d58377e5571604566a2c3d63d83</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFbBRwjiQQ-pM9l_ycGDFKtCwYuel-lmQyNpUnb34s138A19km6IePM0w8dvvplvGLtEWCAofoeLUkmJcMRmBSqei6oqj9kMgGNeocZTdhbCB0AhUPAZu19RiFk79CGjvs62Q8xc52z0o9L2Wdy6rKPg_M_X9z41O0pqdJ5sTEPn7KShLriL3zpn76vHt-Vzvn59elk-rHPLkcfcYQHknGiIO44bq7HkGvSGLAFCJXlTgipqmVTtpNSoQEilqLC8Vrwu-ZxdTb5DiK0Jto3Obu3Q9-lSk9LqqhAJupkg64cQvGvM3rc78p8GwYy_MWim3yT0ekL3FCx1jafetuGP1xVXUhQJu52wcSONgf-3PABO8W7t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast ions and hot electrons in the laser–plasma interaction</title><source>Alma/SFX Local Collection</source><creator>Gitomer, S. J. ; Jones, R. D. ; Begay, F. ; Ehler, A. W. ; Kephart, J. F. ; Kristal, R.</creator><creatorcontrib>Gitomer, S. J. ; Jones, R. D. ; Begay, F. ; Ehler, A. W. ; Kephart, J. F. ; Kristal, R. ; University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><description>Data on the emission of energetic ions produced in laser–matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x‐ray‐determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady‐state spherically symmetric fluid model with classical electron heat conduction, (2) a steady‐state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasnex hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasnex code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities).</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.865510</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700102 - Fusion Energy- Plasma Research- Diagnostics ; 700208 - Fusion Power Plant Technology- Inertial Confinement Technology ; ELECTRON TEMPERATURE ; ENERGY DEPENDENCE ; Exact sciences and technology ; ION EMISSION ; LASER-PRODUCED PLASMA ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; PLASMA DIAGNOSTICS ; Plasma interactions (nonlaser) ; PLASMA SIMULATION ; PULSES ; SIMULATION ; STEADY-STATE CONDITIONS</subject><ispartof>Phys. Fluids; (United States), 1986-08, Vol.29 (8), p.2679-2688</ispartof><rights>American Institute of Physics</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e120aee4fa3e31bc7183707baca010953f8062d58377e5571604566a2c3d63d83</citedby><cites>FETCH-LOGICAL-c313t-e120aee4fa3e31bc7183707baca010953f8062d58377e5571604566a2c3d63d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7936542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5517924$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gitomer, S. J.</creatorcontrib><creatorcontrib>Jones, R. D.</creatorcontrib><creatorcontrib>Begay, F.</creatorcontrib><creatorcontrib>Ehler, A. W.</creatorcontrib><creatorcontrib>Kephart, J. F.</creatorcontrib><creatorcontrib>Kristal, R.</creatorcontrib><creatorcontrib>University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><title>Fast ions and hot electrons in the laser–plasma interaction</title><title>Phys. Fluids; (United States)</title><description>Data on the emission of energetic ions produced in laser–matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x‐ray‐determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady‐state spherically symmetric fluid model with classical electron heat conduction, (2) a steady‐state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasnex hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasnex code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities).</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700102 - Fusion Energy- Plasma Research- Diagnostics</subject><subject>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</subject><subject>ELECTRON TEMPERATURE</subject><subject>ENERGY DEPENDENCE</subject><subject>Exact sciences and technology</subject><subject>ION EMISSION</subject><subject>LASER-PRODUCED PLASMA</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>PLASMA DIAGNOSTICS</subject><subject>Plasma interactions (nonlaser)</subject><subject>PLASMA SIMULATION</subject><subject>PULSES</subject><subject>SIMULATION</subject><subject>STEADY-STATE CONDITIONS</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFbBRwjiQQ-pM9l_ycGDFKtCwYuel-lmQyNpUnb34s138A19km6IePM0w8dvvplvGLtEWCAofoeLUkmJcMRmBSqei6oqj9kMgGNeocZTdhbCB0AhUPAZu19RiFk79CGjvs62Q8xc52z0o9L2Wdy6rKPg_M_X9z41O0pqdJ5sTEPn7KShLriL3zpn76vHt-Vzvn59elk-rHPLkcfcYQHknGiIO44bq7HkGvSGLAFCJXlTgipqmVTtpNSoQEilqLC8Vrwu-ZxdTb5DiK0Jto3Obu3Q9-lSk9LqqhAJupkg64cQvGvM3rc78p8GwYy_MWim3yT0ekL3FCx1jafetuGP1xVXUhQJu52wcSONgf-3PABO8W7t</recordid><startdate>19860801</startdate><enddate>19860801</enddate><creator>Gitomer, S. J.</creator><creator>Jones, R. D.</creator><creator>Begay, F.</creator><creator>Ehler, A. W.</creator><creator>Kephart, J. F.</creator><creator>Kristal, R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19860801</creationdate><title>Fast ions and hot electrons in the laser–plasma interaction</title><author>Gitomer, S. J. ; Jones, R. D. ; Begay, F. ; Ehler, A. W. ; Kephart, J. F. ; Kristal, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e120aee4fa3e31bc7183707baca010953f8062d58377e5571604566a2c3d63d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700102 - Fusion Energy- Plasma Research- Diagnostics</topic><topic>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</topic><topic>ELECTRON TEMPERATURE</topic><topic>ENERGY DEPENDENCE</topic><topic>Exact sciences and technology</topic><topic>ION EMISSION</topic><topic>LASER-PRODUCED PLASMA</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>PLASMA DIAGNOSTICS</topic><topic>Plasma interactions (nonlaser)</topic><topic>PLASMA SIMULATION</topic><topic>PULSES</topic><topic>SIMULATION</topic><topic>STEADY-STATE CONDITIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gitomer, S. J.</creatorcontrib><creatorcontrib>Jones, R. D.</creatorcontrib><creatorcontrib>Begay, F.</creatorcontrib><creatorcontrib>Ehler, A. W.</creatorcontrib><creatorcontrib>Kephart, J. F.</creatorcontrib><creatorcontrib>Kristal, R.</creatorcontrib><creatorcontrib>University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gitomer, S. J.</au><au>Jones, R. D.</au><au>Begay, F.</au><au>Ehler, A. W.</au><au>Kephart, J. F.</au><au>Kristal, R.</au><aucorp>University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast ions and hot electrons in the laser–plasma interaction</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1986-08-01</date><risdate>1986</risdate><volume>29</volume><issue>8</issue><spage>2679</spage><epage>2688</epage><pages>2679-2688</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Data on the emission of energetic ions produced in laser–matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x‐ray‐determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady‐state spherically symmetric fluid model with classical electron heat conduction, (2) a steady‐state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasnex hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasnex code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities).</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.865510</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Phys. Fluids; (United States), 1986-08, Vol.29 (8), p.2679-2688
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_865510
source Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700102 - Fusion Energy- Plasma Research- Diagnostics
700208 - Fusion Power Plant Technology- Inertial Confinement Technology
ELECTRON TEMPERATURE
ENERGY DEPENDENCE
Exact sciences and technology
ION EMISSION
LASER-PRODUCED PLASMA
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
PLASMA
PLASMA DIAGNOSTICS
Plasma interactions (nonlaser)
PLASMA SIMULATION
PULSES
SIMULATION
STEADY-STATE CONDITIONS
title Fast ions and hot electrons in the laser–plasma interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20ions%20and%20hot%20electrons%20in%20the%20laser%E2%80%93plasma%20interaction&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Gitomer,%20S.%20J.&rft.aucorp=University%20of%20California,%20Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1986-08-01&rft.volume=29&rft.issue=8&rft.spage=2679&rft.epage=2688&rft.pages=2679-2688&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.865510&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_865510%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true