Einstein–Weyl spaces and third-order differential equations

The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, “On the null surface formalism,” Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., “Null surfaces formation in 3D,” J. Math Phys. (submitted)] are extended to describe Einstein–Weyl spaces, following Cartan [E. Car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2000-08, Vol.41 (8), p.5572-5581
1. Verfasser: Tod, K. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5581
container_issue 8
container_start_page 5572
container_title Journal of mathematical physics
container_volume 41
creator Tod, K. P.
description The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, “On the null surface formalism,” Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., “Null surfaces formation in 3D,” J. Math Phys. (submitted)] are extended to describe Einstein–Weyl spaces, following Cartan [E. Cartan, “Les espaces généralisées et l’integration de certaines classes d’equations différentielles,” C. R. Acad. Sci. 206, 1425–1429 (1938); “La geometria de las ecuaciones diferenciales de tercer order,” Rev. Mat. Hispano-Am. 4, 1–31 (1941)]. In the resulting formalism, Einstein–Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein–Weyl spaces are given.
doi_str_mv 10.1063/1.533426
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_533426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2876df123b3820c0d2c3cf60698ff8f95aeb067a4db047b1be9c43a46af4c8ec3</originalsourceid><addsrcrecordid>eNqdz8tKxDAYBeAgCtZR8BG61EXGP5em6cKFDDMqDLhRXJY0-YOR2o5JFGbnO_iGPomXig_g6mw-DucQcsxgzkCJMzavhJBc7ZCCgW5orSq9SwoAzimXWu-Tg5QeARjTUhbkfBmGlDEMH2_v97jty7QxFlNpBlfmhxAdHaPDWLrgPUYccjB9ic8vJodxSIdkz5s-4dFvzsjdanm7uKLrm8vrxcWaWt6ITLmulfOMi05oDhYct8J6BarR3mvfVAY7ULWRrgNZd6zDxkphpDJeWo1WzMjJ1GvjmFJE325ieDJx2zJov2-3rJ1uf9HTiSYb8s_Kf9nXMf65duO8-AQ3Cmc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Einstein–Weyl spaces and third-order differential equations</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Tod, K. P.</creator><creatorcontrib>Tod, K. P.</creatorcontrib><description>The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, “On the null surface formalism,” Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., “Null surfaces formation in 3D,” J. Math Phys. (submitted)] are extended to describe Einstein–Weyl spaces, following Cartan [E. Cartan, “Les espaces généralisées et l’integration de certaines classes d’equations différentielles,” C. R. Acad. Sci. 206, 1425–1429 (1938); “La geometria de las ecuaciones diferenciales de tercer order,” Rev. Mat. Hispano-Am. 4, 1–31 (1941)]. In the resulting formalism, Einstein–Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein–Weyl spaces are given.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.533426</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2000-08, Vol.41 (8), p.5572-5581</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2876df123b3820c0d2c3cf60698ff8f95aeb067a4db047b1be9c43a46af4c8ec3</citedby><cites>FETCH-LOGICAL-c293t-2876df123b3820c0d2c3cf60698ff8f95aeb067a4db047b1be9c43a46af4c8ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.533426$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Tod, K. P.</creatorcontrib><title>Einstein–Weyl spaces and third-order differential equations</title><title>Journal of mathematical physics</title><description>The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, “On the null surface formalism,” Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., “Null surfaces formation in 3D,” J. Math Phys. (submitted)] are extended to describe Einstein–Weyl spaces, following Cartan [E. Cartan, “Les espaces généralisées et l’integration de certaines classes d’equations différentielles,” C. R. Acad. Sci. 206, 1425–1429 (1938); “La geometria de las ecuaciones diferenciales de tercer order,” Rev. Mat. Hispano-Am. 4, 1–31 (1941)]. In the resulting formalism, Einstein–Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein–Weyl spaces are given.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqdz8tKxDAYBeAgCtZR8BG61EXGP5em6cKFDDMqDLhRXJY0-YOR2o5JFGbnO_iGPomXig_g6mw-DucQcsxgzkCJMzavhJBc7ZCCgW5orSq9SwoAzimXWu-Tg5QeARjTUhbkfBmGlDEMH2_v97jty7QxFlNpBlfmhxAdHaPDWLrgPUYccjB9ic8vJodxSIdkz5s-4dFvzsjdanm7uKLrm8vrxcWaWt6ITLmulfOMi05oDhYct8J6BarR3mvfVAY7ULWRrgNZd6zDxkphpDJeWo1WzMjJ1GvjmFJE325ieDJx2zJov2-3rJ1uf9HTiSYb8s_Kf9nXMf65duO8-AQ3Cmc7</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Tod, K. P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000801</creationdate><title>Einstein–Weyl spaces and third-order differential equations</title><author>Tod, K. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2876df123b3820c0d2c3cf60698ff8f95aeb067a4db047b1be9c43a46af4c8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tod, K. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tod, K. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Einstein–Weyl spaces and third-order differential equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>41</volume><issue>8</issue><spage>5572</spage><epage>5581</epage><pages>5572-5581</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, “On the null surface formalism,” Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., “Null surfaces formation in 3D,” J. Math Phys. (submitted)] are extended to describe Einstein–Weyl spaces, following Cartan [E. Cartan, “Les espaces généralisées et l’integration de certaines classes d’equations différentielles,” C. R. Acad. Sci. 206, 1425–1429 (1938); “La geometria de las ecuaciones diferenciales de tercer order,” Rev. Mat. Hispano-Am. 4, 1–31 (1941)]. In the resulting formalism, Einstein–Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein–Weyl spaces are given.</abstract><doi>10.1063/1.533426</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2000-08, Vol.41 (8), p.5572-5581
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_533426
source AIP Journals Complete; AIP Digital Archive
title Einstein–Weyl spaces and third-order differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Einstein%E2%80%93Weyl%20spaces%20and%20third-order%20differential%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Tod,%20K.%20P.&rft.date=2000-08-01&rft.volume=41&rft.issue=8&rft.spage=5572&rft.epage=5581&rft.pages=5572-5581&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.533426&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true