Gauge transformation in Einstein–Yang–Mills theories

We discuss the relation between space–time diffeomorphisms and gauge transformations in theories of the Yang–Mills type coupled with Einstein’s general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2000-08, Vol.41 (8), p.5557-5571
Hauptverfasser: Pons, J. M., Salisbury, D. C., Shepley, L. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5571
container_issue 8
container_start_page 5557
container_title Journal of mathematical physics
container_volume 41
creator Pons, J. M.
Salisbury, D. C.
Shepley, L. C.
description We discuss the relation between space–time diffeomorphisms and gauge transformations in theories of the Yang–Mills type coupled with Einstein’s general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure Yang–Mills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the space–time metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer.
doi_str_mv 10.1063/1.533425
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_533425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-b616cc285091473102544f5ec2504f94ed31da532b7116b32337eba6a6a0af233</originalsourceid><addsrcrecordid>eNqdj09KxDAchYMoWEfBI3Spi4755V_TpQzjKIy40YWrkKbJGOmkQxIFd97BG3oSqxUPIG_xePDx4EPoFPAcsKAXMOeUMsL3UAFYNlUtuNxHBcaEVIRJeYiOUnrGGEAyViC50i8bW-aoQ3JD3Orsh1D6UC59SNn68Pn-8ajDZqxb3_epzE92iN6mY3TgdJ_syW_P0MPV8n5xXa3vVjeLy3VlKKlz1QoQxhDJcQOspoAJZ8xxawjHzDXMdhQ6zSlpawDRUkJpbVstxmDtxjVDZ9OviUNK0Tq1i36r45sCrL6NFajJeETPJzQZn39E_sW-DvGPU7vO0S-yUWS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gauge transformation in Einstein–Yang–Mills theories</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Pons, J. M. ; Salisbury, D. C. ; Shepley, L. C.</creator><creatorcontrib>Pons, J. M. ; Salisbury, D. C. ; Shepley, L. C.</creatorcontrib><description>We discuss the relation between space–time diffeomorphisms and gauge transformations in theories of the Yang–Mills type coupled with Einstein’s general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure Yang–Mills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the space–time metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.533425</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2000-08, Vol.41 (8), p.5557-5571</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-b616cc285091473102544f5ec2504f94ed31da532b7116b32337eba6a6a0af233</citedby><cites>FETCH-LOGICAL-c327t-b616cc285091473102544f5ec2504f94ed31da532b7116b32337eba6a6a0af233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.533425$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,1554,4498,27905,27906,76133,76139</link.rule.ids></links><search><creatorcontrib>Pons, J. M.</creatorcontrib><creatorcontrib>Salisbury, D. C.</creatorcontrib><creatorcontrib>Shepley, L. C.</creatorcontrib><title>Gauge transformation in Einstein–Yang–Mills theories</title><title>Journal of mathematical physics</title><description>We discuss the relation between space–time diffeomorphisms and gauge transformations in theories of the Yang–Mills type coupled with Einstein’s general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure Yang–Mills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the space–time metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqdj09KxDAchYMoWEfBI3Spi4755V_TpQzjKIy40YWrkKbJGOmkQxIFd97BG3oSqxUPIG_xePDx4EPoFPAcsKAXMOeUMsL3UAFYNlUtuNxHBcaEVIRJeYiOUnrGGEAyViC50i8bW-aoQ3JD3Orsh1D6UC59SNn68Pn-8ajDZqxb3_epzE92iN6mY3TgdJ_syW_P0MPV8n5xXa3vVjeLy3VlKKlz1QoQxhDJcQOspoAJZ8xxawjHzDXMdhQ6zSlpawDRUkJpbVstxmDtxjVDZ9OviUNK0Tq1i36r45sCrL6NFajJeETPJzQZn39E_sW-DvGPU7vO0S-yUWS-</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Pons, J. M.</creator><creator>Salisbury, D. C.</creator><creator>Shepley, L. C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000801</creationdate><title>Gauge transformation in Einstein–Yang–Mills theories</title><author>Pons, J. M. ; Salisbury, D. C. ; Shepley, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-b616cc285091473102544f5ec2504f94ed31da532b7116b32337eba6a6a0af233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pons, J. M.</creatorcontrib><creatorcontrib>Salisbury, D. C.</creatorcontrib><creatorcontrib>Shepley, L. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pons, J. M.</au><au>Salisbury, D. C.</au><au>Shepley, L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauge transformation in Einstein–Yang–Mills theories</atitle><jtitle>Journal of mathematical physics</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>41</volume><issue>8</issue><spage>5557</spage><epage>5571</epage><pages>5557-5571</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We discuss the relation between space–time diffeomorphisms and gauge transformations in theories of the Yang–Mills type coupled with Einstein’s general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure Yang–Mills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the space–time metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer.</abstract><doi>10.1063/1.533425</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2000-08, Vol.41 (8), p.5557-5571
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_533425
source AIP Journals Complete; AIP Digital Archive
title Gauge transformation in Einstein–Yang–Mills theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauge%20transformation%20in%20Einstein%E2%80%93Yang%E2%80%93Mills%20theories&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Pons,%20J.%20M.&rft.date=2000-08-01&rft.volume=41&rft.issue=8&rft.spage=5557&rft.epage=5571&rft.pages=5557-5571&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.533425&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true