Linearization stability of the Einstein equation for Robertson–Walker models. I
This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1999-10, Vol.40 (10), p.5117-5130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5130 |
---|---|
container_issue | 10 |
container_start_page | 5117 |
container_title | Journal of mathematical physics |
container_volume | 40 |
creator | Bruna, Lluı́s Girbau, Joan |
description | This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model
(V,g,T)
where
V
stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write
V=S×I
where S is a spacelike hypersurface of
V
and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation
G(g)=χT
is linearization stable at g. In a subsequent paper we shall prove that in the case
K=1
the opposite occurs. The case
K=−1
remains as an open question. |
doi_str_mv | 10.1063/1.533019 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_533019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</originalsourceid><addsrcrecordid>eNqd0E9KAzEYBfAgCtYqeIQsdTH1y5-ZJksptRYKoiguh0zzBaPTSU2iUFfewRt6EqsjHsDV2_x48B4hxwxGDCpxxkalEMD0DhkwULoYV6XaJQMAzgsuldonByk9AjCmpByQ64Xv0ET_ZrIPHU3ZNL71eUODo_kB6dR3KaPvKD6_9MSFSG9CgzGn0H2-f9yb9gkjXQWLbRrR-SHZc6ZNePSbQ3J3Mb2dXBaLq9l8cr4ollyLXCgrJdNCN1Y67ppK6JIZXoI1uhTSco4K5Xg7xViupGAosFQWhB5DpRUYMSQnfe8yhpQiunod_crETc2g_r6iZnV_xZae9jQtff5Z8S_7GuKfq9fWiS-q_Gyv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Bruna, Lluı́s ; Girbau, Joan</creator><creatorcontrib>Bruna, Lluı́s ; Girbau, Joan</creatorcontrib><description>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model
(V,g,T)
where
V
stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write
V=S×I
where S is a spacelike hypersurface of
V
and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation
G(g)=χT
is linearization stable at g. In a subsequent paper we shall prove that in the case
K=1
the opposite occurs. The case
K=−1
remains as an open question.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.533019</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1999-10, Vol.40 (10), p.5117-5130</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</citedby><cites>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.533019$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Bruna, Lluı́s</creatorcontrib><creatorcontrib>Girbau, Joan</creatorcontrib><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><title>Journal of mathematical physics</title><description>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model
(V,g,T)
where
V
stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write
V=S×I
where S is a spacelike hypersurface of
V
and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation
G(g)=χT
is linearization stable at g. In a subsequent paper we shall prove that in the case
K=1
the opposite occurs. The case
K=−1
remains as an open question.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqd0E9KAzEYBfAgCtYqeIQsdTH1y5-ZJksptRYKoiguh0zzBaPTSU2iUFfewRt6EqsjHsDV2_x48B4hxwxGDCpxxkalEMD0DhkwULoYV6XaJQMAzgsuldonByk9AjCmpByQ64Xv0ET_ZrIPHU3ZNL71eUODo_kB6dR3KaPvKD6_9MSFSG9CgzGn0H2-f9yb9gkjXQWLbRrR-SHZc6ZNePSbQ3J3Mb2dXBaLq9l8cr4ollyLXCgrJdNCN1Y67ppK6JIZXoI1uhTSco4K5Xg7xViupGAosFQWhB5DpRUYMSQnfe8yhpQiunod_crETc2g_r6iZnV_xZae9jQtff5Z8S_7GuKfq9fWiS-q_Gyv</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Bruna, Lluı́s</creator><creator>Girbau, Joan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><author>Bruna, Lluı́s ; Girbau, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruna, Lluı́s</creatorcontrib><creatorcontrib>Girbau, Joan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruna, Lluı́s</au><au>Girbau, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearization stability of the Einstein equation for Robertson–Walker models. I</atitle><jtitle>Journal of mathematical physics</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>40</volume><issue>10</issue><spage>5117</spage><epage>5130</epage><pages>5117-5130</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model
(V,g,T)
where
V
stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write
V=S×I
where S is a spacelike hypersurface of
V
and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation
G(g)=χT
is linearization stable at g. In a subsequent paper we shall prove that in the case
K=1
the opposite occurs. The case
K=−1
remains as an open question.</abstract><doi>10.1063/1.533019</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1999-10, Vol.40 (10), p.5117-5130 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_533019 |
source | AIP Journals Complete; AIP Digital Archive |
title | Linearization stability of the Einstein equation for Robertson–Walker models. I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearization%20stability%20of%20the%20Einstein%20equation%20for%20Robertson%E2%80%93Walker%20models.%20I&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bruna,%20Llu%C4%B1%CC%81s&rft.date=1999-10-01&rft.volume=40&rft.issue=10&rft.spage=5117&rft.epage=5130&rft.pages=5117-5130&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.533019&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |