Linearization stability of the Einstein equation for Robertson–Walker models. I

This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1999-10, Vol.40 (10), p.5117-5130
Hauptverfasser: Bruna, Lluı́s, Girbau, Joan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5130
container_issue 10
container_start_page 5117
container_title Journal of mathematical physics
container_volume 40
creator Bruna, Lluı́s
Girbau, Joan
description This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model (V,g,T) where V stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write V=S×I where S is a spacelike hypersurface of V and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation G(g)=χT is linearization stable at g. In a subsequent paper we shall prove that in the case K=1 the opposite occurs. The case K=−1 remains as an open question.
doi_str_mv 10.1063/1.533019
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_533019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</originalsourceid><addsrcrecordid>eNqd0E9KAzEYBfAgCtYqeIQsdTH1y5-ZJksptRYKoiguh0zzBaPTSU2iUFfewRt6EqsjHsDV2_x48B4hxwxGDCpxxkalEMD0DhkwULoYV6XaJQMAzgsuldonByk9AjCmpByQ64Xv0ET_ZrIPHU3ZNL71eUODo_kB6dR3KaPvKD6_9MSFSG9CgzGn0H2-f9yb9gkjXQWLbRrR-SHZc6ZNePSbQ3J3Mb2dXBaLq9l8cr4ollyLXCgrJdNCN1Y67ppK6JIZXoI1uhTSco4K5Xg7xViupGAosFQWhB5DpRUYMSQnfe8yhpQiunod_crETc2g_r6iZnV_xZae9jQtff5Z8S_7GuKfq9fWiS-q_Gyv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Bruna, Lluı́s ; Girbau, Joan</creator><creatorcontrib>Bruna, Lluı́s ; Girbau, Joan</creatorcontrib><description>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model (V,g,T) where V stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write V=S×I where S is a spacelike hypersurface of V and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation G(g)=χT is linearization stable at g. In a subsequent paper we shall prove that in the case K=1 the opposite occurs. The case K=−1 remains as an open question.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.533019</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1999-10, Vol.40 (10), p.5117-5130</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</citedby><cites>FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.533019$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Bruna, Lluı́s</creatorcontrib><creatorcontrib>Girbau, Joan</creatorcontrib><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><title>Journal of mathematical physics</title><description>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model (V,g,T) where V stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write V=S×I where S is a spacelike hypersurface of V and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation G(g)=χT is linearization stable at g. In a subsequent paper we shall prove that in the case K=1 the opposite occurs. The case K=−1 remains as an open question.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqd0E9KAzEYBfAgCtYqeIQsdTH1y5-ZJksptRYKoiguh0zzBaPTSU2iUFfewRt6EqsjHsDV2_x48B4hxwxGDCpxxkalEMD0DhkwULoYV6XaJQMAzgsuldonByk9AjCmpByQ64Xv0ET_ZrIPHU3ZNL71eUODo_kB6dR3KaPvKD6_9MSFSG9CgzGn0H2-f9yb9gkjXQWLbRrR-SHZc6ZNePSbQ3J3Mb2dXBaLq9l8cr4ollyLXCgrJdNCN1Y67ppK6JIZXoI1uhTSco4K5Xg7xViupGAosFQWhB5DpRUYMSQnfe8yhpQiunod_crETc2g_r6iZnV_xZae9jQtff5Z8S_7GuKfq9fWiS-q_Gyv</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Bruna, Lluı́s</creator><creator>Girbau, Joan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Linearization stability of the Einstein equation for Robertson–Walker models. I</title><author>Bruna, Lluı́s ; Girbau, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8d441939bd4f2fb63951a250da9534d22e8e47330ad28431e3e58d039706980a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruna, Lluı́s</creatorcontrib><creatorcontrib>Girbau, Joan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruna, Lluı́s</au><au>Girbau, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearization stability of the Einstein equation for Robertson–Walker models. I</atitle><jtitle>Journal of mathematical physics</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>40</volume><issue>10</issue><spage>5117</spage><epage>5130</epage><pages>5117-5130</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model (V,g,T) where V stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write V=S×I where S is a spacelike hypersurface of V and I an R-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation G(g)=χT is linearization stable at g. In a subsequent paper we shall prove that in the case K=1 the opposite occurs. The case K=−1 remains as an open question.</abstract><doi>10.1063/1.533019</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1999-10, Vol.40 (10), p.5117-5130
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_533019
source AIP Journals Complete; AIP Digital Archive
title Linearization stability of the Einstein equation for Robertson–Walker models. I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearization%20stability%20of%20the%20Einstein%20equation%20for%20Robertson%E2%80%93Walker%20models.%20I&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bruna,%20Llu%C4%B1%CC%81s&rft.date=1999-10-01&rft.volume=40&rft.issue=10&rft.spage=5117&rft.epage=5130&rft.pages=5117-5130&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.533019&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true