Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time
We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1996-06, Vol.37 (6), p.3032-3040 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3040 |
---|---|
container_issue | 6 |
container_start_page | 3032 |
container_title | Journal of mathematical physics |
container_volume | 37 |
creator | Hinterleitner, F. |
description | We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems. |
doi_str_mv | 10.1063/1.531552 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_531552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKvgJ2SpyNTkJZlmllJqFQtudD2kmUQj08mYRNFdP0HwD_slRivdCK7e493zLtyL0DElI0pKdk5HglEhYAcNKJFVMS6F3EUDQgAK4FLuo4MYnwihVHI-QG76ppZ9ayL2FkfTq6CS6x6w9j40rlMpK9YHnB4NvmmN69arz1mWfIfN80tm8-I6DGd0vfpo3NJ0MZ9Ui22rEo690iZ_pCwcoj2r2miOfucQ3V9O7yZXxfx2dj25mBcaBE8FCEtKuWBMSqqtLktuLedNBbbiSoJlAqzktCk5gBkToaGSi2rMOCxI1RDChuhk46uDjzEYW_fBLVV4rympvyuqab2pKKOnGzRql36ybNlXH7Zc3Tf2P_aP7xfosncr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><source>AIP Digital Archive</source><creator>Hinterleitner, F.</creator><creatorcontrib>Hinterleitner, F.</creatorcontrib><description>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531552</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1996-06, Vol.37 (6), p.3032-3040</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531552$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids></links><search><creatorcontrib>Hinterleitner, F.</creatorcontrib><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><title>Journal of mathematical physics</title><description>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKvgJ2SpyNTkJZlmllJqFQtudD2kmUQj08mYRNFdP0HwD_slRivdCK7e493zLtyL0DElI0pKdk5HglEhYAcNKJFVMS6F3EUDQgAK4FLuo4MYnwihVHI-QG76ppZ9ayL2FkfTq6CS6x6w9j40rlMpK9YHnB4NvmmN69arz1mWfIfN80tm8-I6DGd0vfpo3NJ0MZ9Ui22rEo690iZ_pCwcoj2r2miOfucQ3V9O7yZXxfx2dj25mBcaBE8FCEtKuWBMSqqtLktuLedNBbbiSoJlAqzktCk5gBkToaGSi2rMOCxI1RDChuhk46uDjzEYW_fBLVV4rympvyuqab2pKKOnGzRql36ybNlXH7Zc3Tf2P_aP7xfosncr</recordid><startdate>199606</startdate><enddate>199606</enddate><creator>Hinterleitner, F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199606</creationdate><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><author>Hinterleitner, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinterleitner, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinterleitner, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</atitle><jtitle>Journal of mathematical physics</jtitle><date>1996-06</date><risdate>1996</risdate><volume>37</volume><issue>6</issue><spage>3032</spage><epage>3040</epage><pages>3032-3040</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</abstract><doi>10.1063/1.531552</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1996-06, Vol.37 (6), p.3032-3040 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_531552 |
source | AIP Digital Archive |
title | Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examples%20of%20separating%20coordinates%20for%20the%20Klein%E2%80%93Gordon%20equation%20in%202+1%E2%80%90dimensional%20flat%20space%E2%80%93time&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Hinterleitner,%20F.&rft.date=1996-06&rft.volume=37&rft.issue=6&rft.spage=3032&rft.epage=3040&rft.pages=3032-3040&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531552&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |