Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time

We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1996-06, Vol.37 (6), p.3032-3040
1. Verfasser: Hinterleitner, F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3040
container_issue 6
container_start_page 3032
container_title Journal of mathematical physics
container_volume 37
creator Hinterleitner, F.
description We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.
doi_str_mv 10.1063/1.531552
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_531552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKvgJ2SpyNTkJZlmllJqFQtudD2kmUQj08mYRNFdP0HwD_slRivdCK7e493zLtyL0DElI0pKdk5HglEhYAcNKJFVMS6F3EUDQgAK4FLuo4MYnwihVHI-QG76ppZ9ayL2FkfTq6CS6x6w9j40rlMpK9YHnB4NvmmN69arz1mWfIfN80tm8-I6DGd0vfpo3NJ0MZ9Ui22rEo690iZ_pCwcoj2r2miOfucQ3V9O7yZXxfx2dj25mBcaBE8FCEtKuWBMSqqtLktuLedNBbbiSoJlAqzktCk5gBkToaGSi2rMOCxI1RDChuhk46uDjzEYW_fBLVV4rympvyuqab2pKKOnGzRql36ybNlXH7Zc3Tf2P_aP7xfosncr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><source>AIP Digital Archive</source><creator>Hinterleitner, F.</creator><creatorcontrib>Hinterleitner, F.</creatorcontrib><description>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531552</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1996-06, Vol.37 (6), p.3032-3040</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531552$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids></links><search><creatorcontrib>Hinterleitner, F.</creatorcontrib><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><title>Journal of mathematical physics</title><description>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKvgJ2SpyNTkJZlmllJqFQtudD2kmUQj08mYRNFdP0HwD_slRivdCK7e493zLtyL0DElI0pKdk5HglEhYAcNKJFVMS6F3EUDQgAK4FLuo4MYnwihVHI-QG76ppZ9ayL2FkfTq6CS6x6w9j40rlMpK9YHnB4NvmmN69arz1mWfIfN80tm8-I6DGd0vfpo3NJ0MZ9Ui22rEo690iZ_pCwcoj2r2miOfucQ3V9O7yZXxfx2dj25mBcaBE8FCEtKuWBMSqqtLktuLedNBbbiSoJlAqzktCk5gBkToaGSi2rMOCxI1RDChuhk46uDjzEYW_fBLVV4rympvyuqab2pKKOnGzRql36ybNlXH7Zc3Tf2P_aP7xfosncr</recordid><startdate>199606</startdate><enddate>199606</enddate><creator>Hinterleitner, F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199606</creationdate><title>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</title><author>Hinterleitner, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-25f068b33881cfc664ff44d92f94a82f352f841d6422e705c298b97342b09d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinterleitner, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinterleitner, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time</atitle><jtitle>Journal of mathematical physics</jtitle><date>1996-06</date><risdate>1996</risdate><volume>37</volume><issue>6</issue><spage>3032</spage><epage>3040</epage><pages>3032-3040</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the domains of those pseudo‐orthogonal coordinate systems in flat 2+1‐dimensional space–time which allow for the separation of the Klein–Gordon equation by a product ansatz and which were characterized by Kalnins and Miller in connection with the symmetry group of the wave equation. The horizons of these domains which were constructed as enveloping surfaces of the common tangent null planes of the coordinate surfaces turn out to be ruled surfaces, generated by the totality of tangents of a null curve. This paper is a report on a longer one containing the horizons and domains of the full number of 87 separating coordinate systems.</abstract><doi>10.1063/1.531552</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1996-06, Vol.37 (6), p.3032-3040
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_531552
source AIP Digital Archive
title Examples of separating coordinates for the Klein–Gordon equation in 2+1‐dimensional flat space–time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examples%20of%20separating%20coordinates%20for%20the%20Klein%E2%80%93Gordon%20equation%20in%202+1%E2%80%90dimensional%20flat%20space%E2%80%93time&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Hinterleitner,%20F.&rft.date=1996-06&rft.volume=37&rft.issue=6&rft.spage=3032&rft.epage=3040&rft.pages=3032-3040&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531552&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true