Asymptotics of radial wave equations

The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics 1995-10, Vol.36 (10), p.5431-5452
1. Verfasser: Morehead, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5452
container_issue 10
container_start_page 5431
container_title Journal of Mathematical Physics
container_volume 36
creator Morehead, James J.
description The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.
doi_str_mv 10.1063/1.531270
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_531270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCo5V8BFGcKGLqfcmmUy6LKX-QMGNrkMmPxhpm3ESK317p474AK7u5uMc7iHkEmGKINgdTmuGtIEjUiDIWdWIWh6TAoDSinIpT8lZSu8AiJLzglzP037T5ZiDSWX0Za9t0OvyS-9c6T4-dQ5xm87Jidfr5C5-74S83i9fFo_V6vnhaTFfVYZRzBXXQwFQC8ZiTRvd8hpaqYFpQRsvWo6s4c4ahzNpWoNcDMxb4Zn0FNuaTcjVmBtTDiqZkJ15M3G7dSYryoFJNpib0Zg-ptQ7r7o-bHS_VwjqsIBCNS4w0NuRHpJ-PvmX3cX-z6nOevYN61xnPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotics of radial wave equations</title><source>AIP Digital Archive</source><creator>Morehead, James J.</creator><creatorcontrib>Morehead, James J.</creatorcontrib><description>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531270</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; ASYMPTOTIC SOLUTIONS ; PHYSICS ; QUANTUM NUMBERS ; SCHROEDINGER EQUATION ; SEMICLASSICAL APPROXIMATION ; WAVE EQUATIONS ; WAVE FUNCTIONS ; WKB APPROXIMATION</subject><ispartof>Journal of Mathematical Physics, 1995-10, Vol.36 (10), p.5431-5452</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</citedby><cites>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531270$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27923,27924,76261</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/240383$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morehead, James J.</creatorcontrib><title>Asymptotics of radial wave equations</title><title>Journal of Mathematical Physics</title><description>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</description><subject>ANGULAR MOMENTUM</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>PHYSICS</subject><subject>QUANTUM NUMBERS</subject><subject>SCHROEDINGER EQUATION</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>WAVE EQUATIONS</subject><subject>WAVE FUNCTIONS</subject><subject>WKB APPROXIMATION</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCo5V8BFGcKGLqfcmmUy6LKX-QMGNrkMmPxhpm3ESK317p474AK7u5uMc7iHkEmGKINgdTmuGtIEjUiDIWdWIWh6TAoDSinIpT8lZSu8AiJLzglzP037T5ZiDSWX0Za9t0OvyS-9c6T4-dQ5xm87Jidfr5C5-74S83i9fFo_V6vnhaTFfVYZRzBXXQwFQC8ZiTRvd8hpaqYFpQRsvWo6s4c4ahzNpWoNcDMxb4Zn0FNuaTcjVmBtTDiqZkJ15M3G7dSYryoFJNpib0Zg-ptQ7r7o-bHS_VwjqsIBCNS4w0NuRHpJ-PvmX3cX-z6nOevYN61xnPA</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Morehead, James J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19951001</creationdate><title>Asymptotics of radial wave equations</title><author>Morehead, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>PHYSICS</topic><topic>QUANTUM NUMBERS</topic><topic>SCHROEDINGER EQUATION</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>WAVE EQUATIONS</topic><topic>WAVE FUNCTIONS</topic><topic>WKB APPROXIMATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morehead, James J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morehead, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of radial wave equations</atitle><jtitle>Journal of Mathematical Physics</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>36</volume><issue>10</issue><spage>5431</spage><epage>5452</epage><pages>5431-5452</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</abstract><cop>United States</cop><doi>10.1063/1.531270</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of Mathematical Physics, 1995-10, Vol.36 (10), p.5431-5452
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_531270
source AIP Digital Archive
subjects ANGULAR MOMENTUM
ASYMPTOTIC SOLUTIONS
PHYSICS
QUANTUM NUMBERS
SCHROEDINGER EQUATION
SEMICLASSICAL APPROXIMATION
WAVE EQUATIONS
WAVE FUNCTIONS
WKB APPROXIMATION
title Asymptotics of radial wave equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20radial%20wave%20equations&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.au=Morehead,%20James%20J.&rft.date=1995-10-01&rft.volume=36&rft.issue=10&rft.spage=5431&rft.epage=5452&rft.pages=5431-5452&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531270&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true