Asymptotics of radial wave equations
The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the m...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics 1995-10, Vol.36 (10), p.5431-5452 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5452 |
---|---|
container_issue | 10 |
container_start_page | 5431 |
container_title | Journal of Mathematical Physics |
container_volume | 36 |
creator | Morehead, James J. |
description | The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry. |
doi_str_mv | 10.1063/1.531270 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_531270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCo5V8BFGcKGLqfcmmUy6LKX-QMGNrkMmPxhpm3ESK317p474AK7u5uMc7iHkEmGKINgdTmuGtIEjUiDIWdWIWh6TAoDSinIpT8lZSu8AiJLzglzP037T5ZiDSWX0Za9t0OvyS-9c6T4-dQ5xm87Jidfr5C5-74S83i9fFo_V6vnhaTFfVYZRzBXXQwFQC8ZiTRvd8hpaqYFpQRsvWo6s4c4ahzNpWoNcDMxb4Zn0FNuaTcjVmBtTDiqZkJ15M3G7dSYryoFJNpib0Zg-ptQ7r7o-bHS_VwjqsIBCNS4w0NuRHpJ-PvmX3cX-z6nOevYN61xnPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotics of radial wave equations</title><source>AIP Digital Archive</source><creator>Morehead, James J.</creator><creatorcontrib>Morehead, James J.</creatorcontrib><description>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531270</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; ASYMPTOTIC SOLUTIONS ; PHYSICS ; QUANTUM NUMBERS ; SCHROEDINGER EQUATION ; SEMICLASSICAL APPROXIMATION ; WAVE EQUATIONS ; WAVE FUNCTIONS ; WKB APPROXIMATION</subject><ispartof>Journal of Mathematical Physics, 1995-10, Vol.36 (10), p.5431-5452</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</citedby><cites>FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531270$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27923,27924,76261</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/240383$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morehead, James J.</creatorcontrib><title>Asymptotics of radial wave equations</title><title>Journal of Mathematical Physics</title><description>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</description><subject>ANGULAR MOMENTUM</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>PHYSICS</subject><subject>QUANTUM NUMBERS</subject><subject>SCHROEDINGER EQUATION</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>WAVE EQUATIONS</subject><subject>WAVE FUNCTIONS</subject><subject>WKB APPROXIMATION</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCo5V8BFGcKGLqfcmmUy6LKX-QMGNrkMmPxhpm3ESK317p474AK7u5uMc7iHkEmGKINgdTmuGtIEjUiDIWdWIWh6TAoDSinIpT8lZSu8AiJLzglzP037T5ZiDSWX0Za9t0OvyS-9c6T4-dQ5xm87Jidfr5C5-74S83i9fFo_V6vnhaTFfVYZRzBXXQwFQC8ZiTRvd8hpaqYFpQRsvWo6s4c4ahzNpWoNcDMxb4Zn0FNuaTcjVmBtTDiqZkJ15M3G7dSYryoFJNpib0Zg-ptQ7r7o-bHS_VwjqsIBCNS4w0NuRHpJ-PvmX3cX-z6nOevYN61xnPA</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Morehead, James J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19951001</creationdate><title>Asymptotics of radial wave equations</title><author>Morehead, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-4a24802d0cd1527ab450b8a03a627f6b41374edce198cbc146152fd6f38f21b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>PHYSICS</topic><topic>QUANTUM NUMBERS</topic><topic>SCHROEDINGER EQUATION</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>WAVE EQUATIONS</topic><topic>WAVE FUNCTIONS</topic><topic>WKB APPROXIMATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morehead, James J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morehead, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of radial wave equations</atitle><jtitle>Journal of Mathematical Physics</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>36</volume><issue>10</issue><spage>5431</spage><epage>5452</epage><pages>5431-5452</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Langer modification is an improvement in the WKB analysis of the radial Schrödinger equation. We derive a generalization of the Langer modification to any radial operator. For differential operators we write the modified classical symbols explicitly and show that the WKB wavefunctions with the modification have the exact limiting behavior for small radius. Unlike in the Schrödinger case, generally the modified radial analysis is not equivalent to the WKB analysis of the full problem before reduction by the spherical symmetry.</abstract><cop>United States</cop><doi>10.1063/1.531270</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of Mathematical Physics, 1995-10, Vol.36 (10), p.5431-5452 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_531270 |
source | AIP Digital Archive |
subjects | ANGULAR MOMENTUM ASYMPTOTIC SOLUTIONS PHYSICS QUANTUM NUMBERS SCHROEDINGER EQUATION SEMICLASSICAL APPROXIMATION WAVE EQUATIONS WAVE FUNCTIONS WKB APPROXIMATION |
title | Asymptotics of radial wave equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20radial%20wave%20equations&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.au=Morehead,%20James%20J.&rft.date=1995-10-01&rft.volume=36&rft.issue=10&rft.spage=5431&rft.epage=5452&rft.pages=5431-5452&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531270&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |