Flat connections and nonlocal conserved quantities in irrational conformal field theory
Irrational conformal field theory (ICFT) includes rational conformal field theory as a small subspace, and the affine‐Virasoro Ward identities describe the biconformal correlators of ICFT. The Ward identities are reformulated as an equivalent linear partial differential system with flat connections...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1995-03, Vol.36 (3), p.1080-1110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 3 |
container_start_page | 1080 |
container_title | Journal of mathematical physics |
container_volume | 36 |
creator | Halpern, M. B. Obers, N. A. |
description | Irrational conformal field theory (ICFT) includes rational conformal field theory as a small subspace, and the affine‐Virasoro Ward identities describe the biconformal correlators of ICFT. The Ward identities are reformulated as an equivalent linear partial differential system with flat connections and new nonlocal conserved quantities. As examples of the formulation, the system of flat connections is solved for the coset correlators, the correlators of the affine‐Sugawara nests, and the high‐level n‐point correlators of ICFT. |
doi_str_mv | 10.1063/1.531107 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_531107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a52401b57c99a72ca6c1ba19cad00b309ddbe57bba11ecc8bf759573442a792f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCtYp-BGCJz10JmnTpEcZToWBF8VjSPOHRbpkJnGwb29rxy6Cpze8-fHA8wJwjdEco6a6x3NaYYzYCSgw4m3JGspPQYEQISWpOT8HFyl9IoQxr-sCfCx7maEK3huVXfAJSq-hD74PSvbjRzJxZzT8-pY-u-xMgs5DF6Mc-URsiJvhZZ3pNcxrE-L-EpxZ2SdzdZgz8L58fFs8l6vXp5fFw6pUFW1yKSmpEe4oU20rGVGyUbiTuFVSI9RVqNW6M5R1ww4bpXhnGW0pq-qaSNYSW83AzZQbUnYiKZeNWh_qiKE6p5wO6HZCKoaUorFiG91Gxr3ASIxXE1hMVxvo3UTHqN-KR7sL8ejEVtv_7J_cH-YJfAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flat connections and nonlocal conserved quantities in irrational conformal field theory</title><source>AIP Digital Archive</source><creator>Halpern, M. B. ; Obers, N. A.</creator><creatorcontrib>Halpern, M. B. ; Obers, N. A.</creatorcontrib><description>Irrational conformal field theory (ICFT) includes rational conformal field theory as a small subspace, and the affine‐Virasoro Ward identities describe the biconformal correlators of ICFT. The Ward identities are reformulated as an equivalent linear partial differential system with flat connections and new nonlocal conserved quantities. As examples of the formulation, the system of flat connections is solved for the coset correlators, the correlators of the affine‐Sugawara nests, and the high‐level n‐point correlators of ICFT.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531107</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-) ; ALGEBRA ; COMPOSITE MODELS ; CONFORMAL INVARIANCE ; CONSERVATION LAWS ; CORRELATION FUNCTIONS ; CURRENT ALGEBRA ; EXTENDED PARTICLE MODEL ; FUNCTIONS ; INVARIANCE PRINCIPLES ; LIE GROUPS ; MATHEMATICAL MODELS ; MATHEMATICS ; Pa ; PARTICLE MODELS ; Particle Systematics-- Unified Theories & Models-- (1992-) ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUARK MODEL ; STRING MODELS ; SYMMETRY GROUPS 662210 -- Specific Theories & Interaction Models ; WARD IDENTITY</subject><ispartof>Journal of mathematical physics, 1995-03, Vol.36 (3), p.1080-1110</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a52401b57c99a72ca6c1ba19cad00b309ddbe57bba11ecc8bf759573442a792f3</citedby><cites>FETCH-LOGICAL-c356t-a52401b57c99a72ca6c1ba19cad00b309ddbe57bba11ecc8bf759573442a792f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531107$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6588585$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Halpern, M. B.</creatorcontrib><creatorcontrib>Obers, N. A.</creatorcontrib><title>Flat connections and nonlocal conserved quantities in irrational conformal field theory</title><title>Journal of mathematical physics</title><description>Irrational conformal field theory (ICFT) includes rational conformal field theory as a small subspace, and the affine‐Virasoro Ward identities describe the biconformal correlators of ICFT. The Ward identities are reformulated as an equivalent linear partial differential system with flat connections and new nonlocal conserved quantities. As examples of the formulation, the system of flat connections is solved for the coset correlators, the correlators of the affine‐Sugawara nests, and the high‐level n‐point correlators of ICFT.</description><subject>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-)</subject><subject>ALGEBRA</subject><subject>COMPOSITE MODELS</subject><subject>CONFORMAL INVARIANCE</subject><subject>CONSERVATION LAWS</subject><subject>CORRELATION FUNCTIONS</subject><subject>CURRENT ALGEBRA</subject><subject>EXTENDED PARTICLE MODEL</subject><subject>FUNCTIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>LIE GROUPS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICS</subject><subject>Pa</subject><subject>PARTICLE MODELS</subject><subject>Particle Systematics-- Unified Theories & Models-- (1992-)</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUARK MODEL</subject><subject>STRING MODELS</subject><subject>SYMMETRY GROUPS 662210 -- Specific Theories & Interaction Models</subject><subject>WARD IDENTITY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCtYp-BGCJz10JmnTpEcZToWBF8VjSPOHRbpkJnGwb29rxy6Cpze8-fHA8wJwjdEco6a6x3NaYYzYCSgw4m3JGspPQYEQISWpOT8HFyl9IoQxr-sCfCx7maEK3huVXfAJSq-hD74PSvbjRzJxZzT8-pY-u-xMgs5DF6Mc-URsiJvhZZ3pNcxrE-L-EpxZ2SdzdZgz8L58fFs8l6vXp5fFw6pUFW1yKSmpEe4oU20rGVGyUbiTuFVSI9RVqNW6M5R1ww4bpXhnGW0pq-qaSNYSW83AzZQbUnYiKZeNWh_qiKE6p5wO6HZCKoaUorFiG91Gxr3ASIxXE1hMVxvo3UTHqN-KR7sL8ejEVtv_7J_cH-YJfAQ</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Halpern, M. B.</creator><creator>Obers, N. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19950301</creationdate><title>Flat connections and nonlocal conserved quantities in irrational conformal field theory</title><author>Halpern, M. B. ; Obers, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a52401b57c99a72ca6c1ba19cad00b309ddbe57bba11ecc8bf759573442a792f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-)</topic><topic>ALGEBRA</topic><topic>COMPOSITE MODELS</topic><topic>CONFORMAL INVARIANCE</topic><topic>CONSERVATION LAWS</topic><topic>CORRELATION FUNCTIONS</topic><topic>CURRENT ALGEBRA</topic><topic>EXTENDED PARTICLE MODEL</topic><topic>FUNCTIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>LIE GROUPS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICS</topic><topic>Pa</topic><topic>PARTICLE MODELS</topic><topic>Particle Systematics-- Unified Theories & Models-- (1992-)</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUARK MODEL</topic><topic>STRING MODELS</topic><topic>SYMMETRY GROUPS 662210 -- Specific Theories & Interaction Models</topic><topic>WARD IDENTITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halpern, M. B.</creatorcontrib><creatorcontrib>Obers, N. A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halpern, M. B.</au><au>Obers, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flat connections and nonlocal conserved quantities in irrational conformal field theory</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>36</volume><issue>3</issue><spage>1080</spage><epage>1110</epage><pages>1080-1110</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Irrational conformal field theory (ICFT) includes rational conformal field theory as a small subspace, and the affine‐Virasoro Ward identities describe the biconformal correlators of ICFT. The Ward identities are reformulated as an equivalent linear partial differential system with flat connections and new nonlocal conserved quantities. As examples of the formulation, the system of flat connections is solved for the coset correlators, the correlators of the affine‐Sugawara nests, and the high‐level n‐point correlators of ICFT.</abstract><cop>United States</cop><doi>10.1063/1.531107</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1995-03, Vol.36 (3), p.1080-1110 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_531107 |
source | AIP Digital Archive |
subjects | 662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-) ALGEBRA COMPOSITE MODELS CONFORMAL INVARIANCE CONSERVATION LAWS CORRELATION FUNCTIONS CURRENT ALGEBRA EXTENDED PARTICLE MODEL FUNCTIONS INVARIANCE PRINCIPLES LIE GROUPS MATHEMATICAL MODELS MATHEMATICS Pa PARTICLE MODELS Particle Systematics-- Unified Theories & Models-- (1992-) PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUARK MODEL STRING MODELS SYMMETRY GROUPS 662210 -- Specific Theories & Interaction Models WARD IDENTITY |
title | Flat connections and nonlocal conserved quantities in irrational conformal field theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flat%20connections%20and%20nonlocal%20conserved%20quantities%20in%20irrational%20conformal%20field%20theory&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Halpern,%20M.%20B.&rft.date=1995-03-01&rft.volume=36&rft.issue=3&rft.spage=1080&rft.epage=1110&rft.pages=1080-1110&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531107&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |