Renewal theory for transport processes in binary statistical mixtures
Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and var...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N.Y.); (United States) 1988-04, Vol.29 (4), p.995-1004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 4 |
container_start_page | 995 |
container_title | J. Math. Phys. (N.Y.); (United States) |
container_volume | 29 |
creator | Levermore, C. D. Wong, J. Pomraning, G. C. |
description | Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source. |
doi_str_mv | 10.1063/1.527997 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_527997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo5V8BGKuNBFx1x6SZYyjBcYEETXoU1PmMhMU3Li7e3NUJmdrrL5cs75f0LOGZ0zWosbNq94o1RzQGaMSlU0dSUPyYxSzgteSnlMThDfKGVMluWMLJ9hgM92k8c1-PCdWx_yGNoBRx9iPgZvABEwd0PeuaFNAmMbHUZn0qet-4rvAfCUHNl2g3D2-2bk9W75sngoVk_3j4vbVWFEqWIBpVUgewO1kQZkwzrVdUZy3onS9hygAlpZqOteCi5q6LmselEaqsAAV63IyMU016cDNBoXwayNHwYwUVdcUZoqyMjVhEzwiAGsHoPbptM1o3rXkWZ66ijRy4mOLaY8NgU3Dve-YYyyWiR2PbHdxpTeD_-N_NN--LB3euyt-AG4joL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Renewal theory for transport processes in binary statistical mixtures</title><source>AIP Digital Archive</source><creator>Levermore, C. D. ; Wong, J. ; Pomraning, G. C.</creator><creatorcontrib>Levermore, C. D. ; Wong, J. ; Pomraning, G. C. ; Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><description>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527997</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ; BINARY MIXTURES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISPERSIONS ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; KINETIC EQUATIONS ; MECHANICS ; MIXTURES ; Nonhomogeneous flows ; PHYSICAL PROPERTIES ; Physics ; STATISTICAL MECHANICS ; STOCHASTIC PROCESSES ; THERMODYNAMIC PROPERTIES ; TRANSPORT THEORY</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1988-04, Vol.29 (4), p.995-1004</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</citedby><cites>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527997$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7110163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5290006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Levermore, C. D.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Pomraning, G. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><title>Renewal theory for transport processes in binary statistical mixtures</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</description><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</subject><subject>BINARY MIXTURES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISPERSIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>KINETIC EQUATIONS</subject><subject>MECHANICS</subject><subject>MIXTURES</subject><subject>Nonhomogeneous flows</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>STATISTICAL MECHANICS</subject><subject>STOCHASTIC PROCESSES</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TRANSPORT THEORY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo5V8BGKuNBFx1x6SZYyjBcYEETXoU1PmMhMU3Li7e3NUJmdrrL5cs75f0LOGZ0zWosbNq94o1RzQGaMSlU0dSUPyYxSzgteSnlMThDfKGVMluWMLJ9hgM92k8c1-PCdWx_yGNoBRx9iPgZvABEwd0PeuaFNAmMbHUZn0qet-4rvAfCUHNl2g3D2-2bk9W75sngoVk_3j4vbVWFEqWIBpVUgewO1kQZkwzrVdUZy3onS9hygAlpZqOteCi5q6LmselEaqsAAV63IyMU016cDNBoXwayNHwYwUVdcUZoqyMjVhEzwiAGsHoPbptM1o3rXkWZ66ijRy4mOLaY8NgU3Dve-YYyyWiR2PbHdxpTeD_-N_NN--LB3euyt-AG4joL0</recordid><startdate>19880401</startdate><enddate>19880401</enddate><creator>Levermore, C. D.</creator><creator>Wong, J.</creator><creator>Pomraning, G. C.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19880401</creationdate><title>Renewal theory for transport processes in binary statistical mixtures</title><author>Levermore, C. D. ; Wong, J. ; Pomraning, G. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</topic><topic>BINARY MIXTURES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISPERSIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>KINETIC EQUATIONS</topic><topic>MECHANICS</topic><topic>MIXTURES</topic><topic>Nonhomogeneous flows</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>STATISTICAL MECHANICS</topic><topic>STOCHASTIC PROCESSES</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TRANSPORT THEORY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levermore, C. D.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Pomraning, G. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levermore, C. D.</au><au>Wong, J.</au><au>Pomraning, G. C.</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewal theory for transport processes in binary statistical mixtures</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1988-04-01</date><risdate>1988</risdate><volume>29</volume><issue>4</issue><spage>995</spage><epage>1004</epage><pages>995-1004</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527997</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys. (N.Y.); (United States), 1988-04, Vol.29 (4), p.995-1004 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_527997 |
source | AIP Digital Archive |
subjects | 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics BINARY MIXTURES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DISPERSIONS EQUATIONS Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) KINETIC EQUATIONS MECHANICS MIXTURES Nonhomogeneous flows PHYSICAL PROPERTIES Physics STATISTICAL MECHANICS STOCHASTIC PROCESSES THERMODYNAMIC PROPERTIES TRANSPORT THEORY |
title | Renewal theory for transport processes in binary statistical mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewal%20theory%20for%20transport%20processes%20in%20binary%20statistical%20mixtures&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=Levermore,%20C.%20D.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550&rft.date=1988-04-01&rft.volume=29&rft.issue=4&rft.spage=995&rft.epage=1004&rft.pages=995-1004&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527997&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |