Renewal theory for transport processes in binary statistical mixtures

Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.); (United States) 1988-04, Vol.29 (4), p.995-1004
Hauptverfasser: Levermore, C. D., Wong, J., Pomraning, G. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 995
container_title J. Math. Phys. (N.Y.); (United States)
container_volume 29
creator Levermore, C. D.
Wong, J.
Pomraning, G. C.
description Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.
doi_str_mv 10.1063/1.527997
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_527997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo5V8BGKuNBFx1x6SZYyjBcYEETXoU1PmMhMU3Li7e3NUJmdrrL5cs75f0LOGZ0zWosbNq94o1RzQGaMSlU0dSUPyYxSzgteSnlMThDfKGVMluWMLJ9hgM92k8c1-PCdWx_yGNoBRx9iPgZvABEwd0PeuaFNAmMbHUZn0qet-4rvAfCUHNl2g3D2-2bk9W75sngoVk_3j4vbVWFEqWIBpVUgewO1kQZkwzrVdUZy3onS9hygAlpZqOteCi5q6LmselEaqsAAV63IyMU016cDNBoXwayNHwYwUVdcUZoqyMjVhEzwiAGsHoPbptM1o3rXkWZ66ijRy4mOLaY8NgU3Dve-YYyyWiR2PbHdxpTeD_-N_NN--LB3euyt-AG4joL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Renewal theory for transport processes in binary statistical mixtures</title><source>AIP Digital Archive</source><creator>Levermore, C. D. ; Wong, J. ; Pomraning, G. C.</creator><creatorcontrib>Levermore, C. D. ; Wong, J. ; Pomraning, G. C. ; Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><description>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527997</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; BINARY MIXTURES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISPERSIONS ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; KINETIC EQUATIONS ; MECHANICS ; MIXTURES ; Nonhomogeneous flows ; PHYSICAL PROPERTIES ; Physics ; STATISTICAL MECHANICS ; STOCHASTIC PROCESSES ; THERMODYNAMIC PROPERTIES ; TRANSPORT THEORY</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1988-04, Vol.29 (4), p.995-1004</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</citedby><cites>FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527997$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7110163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5290006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Levermore, C. D.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Pomraning, G. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><title>Renewal theory for transport processes in binary statistical mixtures</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</description><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>BINARY MIXTURES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISPERSIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>KINETIC EQUATIONS</subject><subject>MECHANICS</subject><subject>MIXTURES</subject><subject>Nonhomogeneous flows</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>STATISTICAL MECHANICS</subject><subject>STOCHASTIC PROCESSES</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TRANSPORT THEORY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo5V8BGKuNBFx1x6SZYyjBcYEETXoU1PmMhMU3Li7e3NUJmdrrL5cs75f0LOGZ0zWosbNq94o1RzQGaMSlU0dSUPyYxSzgteSnlMThDfKGVMluWMLJ9hgM92k8c1-PCdWx_yGNoBRx9iPgZvABEwd0PeuaFNAmMbHUZn0qet-4rvAfCUHNl2g3D2-2bk9W75sngoVk_3j4vbVWFEqWIBpVUgewO1kQZkwzrVdUZy3onS9hygAlpZqOteCi5q6LmselEaqsAAV63IyMU016cDNBoXwayNHwYwUVdcUZoqyMjVhEzwiAGsHoPbptM1o3rXkWZ66ijRy4mOLaY8NgU3Dve-YYyyWiR2PbHdxpTeD_-N_NN--LB3euyt-AG4joL0</recordid><startdate>19880401</startdate><enddate>19880401</enddate><creator>Levermore, C. D.</creator><creator>Wong, J.</creator><creator>Pomraning, G. C.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19880401</creationdate><title>Renewal theory for transport processes in binary statistical mixtures</title><author>Levermore, C. D. ; Wong, J. ; Pomraning, G. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e4f9e8dce6c8ce871b9bbc822b34fd2ee5e05fe66d83236ed285d34c09ece29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>BINARY MIXTURES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISPERSIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>KINETIC EQUATIONS</topic><topic>MECHANICS</topic><topic>MIXTURES</topic><topic>Nonhomogeneous flows</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>STATISTICAL MECHANICS</topic><topic>STOCHASTIC PROCESSES</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TRANSPORT THEORY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levermore, C. D.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Pomraning, G. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levermore, C. D.</au><au>Wong, J.</au><au>Pomraning, G. C.</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewal theory for transport processes in binary statistical mixtures</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1988-04-01</date><risdate>1988</risdate><volume>29</volume><issue>4</issue><spage>995</spage><epage>1004</epage><pages>995-1004</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Renewal theory is used to analyze linear particle transport without scattering in a random mixture of two immiscible fluids, with the statistics described by arbitrary (non‐Markovian) fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is that the mean and variance of the chord length distributions through each fluid is sufficient knowledge of the statistics to give a reasonably accurate description of the ensemble averaged intensity. Expressions for effective cross sections and an effective source to be used in the usual deterministic transport equation are also obtained. The use of these effective quantities allows statistical information to be introduced very simply into a standard transport equation. An analysis is given which shows how the transport description, including scattering, in a Markovian mixture can be modified to yield an approximate description of transport in a non‐Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as the simpler model involving the effective cross sections and source.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527997</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N.Y.); (United States), 1988-04, Vol.29 (4), p.995-1004
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_527997
source AIP Digital Archive
subjects 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
BINARY MIXTURES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DISPERSIONS
EQUATIONS
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
KINETIC EQUATIONS
MECHANICS
MIXTURES
Nonhomogeneous flows
PHYSICAL PROPERTIES
Physics
STATISTICAL MECHANICS
STOCHASTIC PROCESSES
THERMODYNAMIC PROPERTIES
TRANSPORT THEORY
title Renewal theory for transport processes in binary statistical mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewal%20theory%20for%20transport%20processes%20in%20binary%20statistical%20mixtures&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=Levermore,%20C.%20D.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550&rft.date=1988-04-01&rft.volume=29&rft.issue=4&rft.spage=995&rft.epage=1004&rft.pages=995-1004&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527997&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true