Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution
This paper investigates the influence of a uniform vertical throughflow on the stability of Poiseuille flow in a Newtonian fluid-saturated Brinkman porous medium. The solution to the stability eigenvalue problem is obtained numerically using the Chebyshev collocation and the Galerkin methods. The ve...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-04, Vol.32 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Shankar, B. M. Shivakumara, I. S. |
description | This paper investigates the influence of a uniform vertical throughflow on the stability of Poiseuille flow in a Newtonian fluid-saturated Brinkman porous medium. The solution to the stability eigenvalue problem is obtained numerically using the Chebyshev collocation and the Galerkin methods. The vertical throughflow, irrespective of its direction, imparts an identical stabilizing/destabilizing effect on the fluid flow. The throughflow dependent Reynolds number RT instills both stabilizing and destabilizing effects in a fluid saturated channel of porous medium and the range of RT up to which the system gets destabilized increases with increasing porous parameter. The results for the clear fluid case are also obtained as a particular case from the present study, and contrary to the porous case, throughflow always displays a stabilizing effect. Moreover, the numerical solutions presented will be useful for checking the performance and accuracy of any numerical methodologies. |
doi_str_mv | 10.1063/1.5143170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5143170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387077700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-36935d68a185f35c694925ca5226599b39687aadaa38cb3f22dacf213927ea4c3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR_dZONNilqhoKAeZZmmSTdl29R8WPrv3aU9e5o5PMzwvghdUzKiRPB7OirpmFNJTtCAkkoVUghx2u-SFEJweo4uYlwRQrhiYoC-PxLMXevSHnuLtz74HIt376LJrm0Ntq3f4Z1LDc4bZ31Y418TktPQ4tR0eNn04gFP3bLBoHUOkAyOvs3J-c0lOrPQRnN1nEP09fz0OZkWs7eX18njrNBMsVRwoXi5EBXQqrS81EKNFSs1lIyJUqk5V6KSAAsAXuk5t4wtQFtGuwjSwFjzIbo53N0G_5NNTPXK57DpXtaMV5JIKbvAQ3R7UDr4GIOx9Ta4NYR9TUndt1fT-theZ-8ONmqXoM_yD_4DpdZvgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387077700</pqid></control><display><type>article</type><title>Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shankar, B. M. ; Shivakumara, I. S.</creator><creatorcontrib>Shankar, B. M. ; Shivakumara, I. S.</creatorcontrib><description>This paper investigates the influence of a uniform vertical throughflow on the stability of Poiseuille flow in a Newtonian fluid-saturated Brinkman porous medium. The solution to the stability eigenvalue problem is obtained numerically using the Chebyshev collocation and the Galerkin methods. The vertical throughflow, irrespective of its direction, imparts an identical stabilizing/destabilizing effect on the fluid flow. The throughflow dependent Reynolds number RT instills both stabilizing and destabilizing effects in a fluid saturated channel of porous medium and the range of RT up to which the system gets destabilized increases with increasing porous parameter. The results for the clear fluid case are also obtained as a particular case from the present study, and contrary to the porous case, throughflow always displays a stabilizing effect. Moreover, the numerical solutions presented will be useful for checking the performance and accuracy of any numerical methodologies.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5143170</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chebyshev approximation ; Collocation methods ; Computational fluid dynamics ; Eigenvalues ; Flow stability ; Fluid dynamics ; Fluid flow ; Galerkin method ; Laminar flow ; Newtonian fluids ; Physics ; Porous media ; Reynolds number</subject><ispartof>Physics of fluids (1994), 2020-04, Vol.32 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-36935d68a185f35c694925ca5226599b39687aadaa38cb3f22dacf213927ea4c3</citedby><cites>FETCH-LOGICAL-c292t-36935d68a185f35c694925ca5226599b39687aadaa38cb3f22dacf213927ea4c3</cites><orcidid>0000-0001-8194-537X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><title>Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution</title><title>Physics of fluids (1994)</title><description>This paper investigates the influence of a uniform vertical throughflow on the stability of Poiseuille flow in a Newtonian fluid-saturated Brinkman porous medium. The solution to the stability eigenvalue problem is obtained numerically using the Chebyshev collocation and the Galerkin methods. The vertical throughflow, irrespective of its direction, imparts an identical stabilizing/destabilizing effect on the fluid flow. The throughflow dependent Reynolds number RT instills both stabilizing and destabilizing effects in a fluid saturated channel of porous medium and the range of RT up to which the system gets destabilized increases with increasing porous parameter. The results for the clear fluid case are also obtained as a particular case from the present study, and contrary to the porous case, throughflow always displays a stabilizing effect. Moreover, the numerical solutions presented will be useful for checking the performance and accuracy of any numerical methodologies.</description><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Computational fluid dynamics</subject><subject>Eigenvalues</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>Laminar flow</subject><subject>Newtonian fluids</subject><subject>Physics</subject><subject>Porous media</subject><subject>Reynolds number</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR_dZONNilqhoKAeZZmmSTdl29R8WPrv3aU9e5o5PMzwvghdUzKiRPB7OirpmFNJTtCAkkoVUghx2u-SFEJweo4uYlwRQrhiYoC-PxLMXevSHnuLtz74HIt376LJrm0Ntq3f4Z1LDc4bZ31Y418TktPQ4tR0eNn04gFP3bLBoHUOkAyOvs3J-c0lOrPQRnN1nEP09fz0OZkWs7eX18njrNBMsVRwoXi5EBXQqrS81EKNFSs1lIyJUqk5V6KSAAsAXuk5t4wtQFtGuwjSwFjzIbo53N0G_5NNTPXK57DpXtaMV5JIKbvAQ3R7UDr4GIOx9Ta4NYR9TUndt1fT-theZ-8ONmqXoM_yD_4DpdZvgQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shankar, B. M.</creator><creator>Shivakumara, I. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8194-537X</orcidid></search><sort><creationdate>20200401</creationdate><title>Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution</title><author>Shankar, B. M. ; Shivakumara, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-36935d68a185f35c694925ca5226599b39687aadaa38cb3f22dacf213927ea4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Computational fluid dynamics</topic><topic>Eigenvalues</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>Laminar flow</topic><topic>Newtonian fluids</topic><topic>Physics</topic><topic>Porous media</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, B. M.</au><au>Shivakumara, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper investigates the influence of a uniform vertical throughflow on the stability of Poiseuille flow in a Newtonian fluid-saturated Brinkman porous medium. The solution to the stability eigenvalue problem is obtained numerically using the Chebyshev collocation and the Galerkin methods. The vertical throughflow, irrespective of its direction, imparts an identical stabilizing/destabilizing effect on the fluid flow. The throughflow dependent Reynolds number RT instills both stabilizing and destabilizing effects in a fluid saturated channel of porous medium and the range of RT up to which the system gets destabilized increases with increasing porous parameter. The results for the clear fluid case are also obtained as a particular case from the present study, and contrary to the porous case, throughflow always displays a stabilizing effect. Moreover, the numerical solutions presented will be useful for checking the performance and accuracy of any numerical methodologies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5143170</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8194-537X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-04, Vol.32 (4) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5143170 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chebyshev approximation Collocation methods Computational fluid dynamics Eigenvalues Flow stability Fluid dynamics Fluid flow Galerkin method Laminar flow Newtonian fluids Physics Porous media Reynolds number |
title | Stability of porous-Poiseuille flow with uniform vertical throughflow: High accurate solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20porous-Poiseuille%20flow%20with%20uniform%20vertical%20throughflow:%20High%20accurate%20solution&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Shankar,%20B.%20M.&rft.date=2020-04-01&rft.volume=32&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5143170&rft_dat=%3Cproquest_scita%3E2387077700%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387077700&rft_id=info:pmid/&rfr_iscdi=true |