Solvent effects on the π shape resonances of uracil

We have investigated the effect of microsolvation on the π* shape resonances of uracil, referred to as π1* and π2* in the order of increasing energy. Our study considered uracil–water aggregates with six solvent molecules obtained from Monte Carlo simulations in the liquid phase. To explore the ense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-02, Vol.152 (8), p.084301-084301
Hauptverfasser: Cornetta, L. M., Coutinho, K., Varella, M. T. do N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084301
container_issue 8
container_start_page 084301
container_title The Journal of chemical physics
container_volume 152
creator Cornetta, L. M.
Coutinho, K.
Varella, M. T. do N.
description We have investigated the effect of microsolvation on the π* shape resonances of uracil, referred to as π1* and π2* in the order of increasing energy. Our study considered uracil–water aggregates with six solvent molecules obtained from Monte Carlo simulations in the liquid phase. To explore the ensemble statistics, we combined scattering calculations, performed in the static exchange and static exchange plus polarization approximations, with linear regressions of virtual orbital energies to the scattering results. In general, the solvent molecules stabilize the anion states, and the lower lying π1* resonance becomes a bound state in most of the solute–water clusters. We also discuss how the strength of the H bonds can affect the energies of the anion states, in addition to the number and donor/acceptor characters of those bonds. The thermal distributions for the vertical attachment energies, obtained from 133 statistically uncorrelated solute–solvent clusters, are significantly broad in the energy scale of the autoionization widths. The distributions for the π1* and π2* anion states slightly overlap, thus giving rise to a quasi-continuum of attachment energies below ≲2.5 eV, in contrast to the gas phase picture of electron attachment to well separated resonances below the electronic excitation threshold. Both the stabilization of the anion states and the spread of attachment energies could be expected to favor the dissociative electron attachment processes believed to underlie the electron-induced damage to biomolecules.
doi_str_mv 10.1063/1.5139459
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5139459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369882080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-eb894194dbc9594afec434f18bd98d44390744b3c7aae7c177ef1d532540db7c3</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCk-24ntEVX8kyoxAHPkOBc1VRoX20Fi4w15JVK1MDAw3XA_fXf6CDkFOgWa82uYZsC1yPQeGQNVOpW5pvtkTCmDVOc0H5GjEJaUUpBMHJIRZwCcSxgT8ezad-xignWNNobEdUlcYPL1mYSFWWPiMbjOdBaHVZ303timPSYHtWkDnuzmhLze3b7MHtL50_3j7GaeWi5UTLFUWoAWVWl1poUZDggualBlpVUlBNdUClFyK41BaUFKrKHKOMsErUpp-YRcbHPX3r31GGKxaoLFtjUduj4UjOdaKUYVHej5H7p0ve-G7zaKCQkZsEFdbpX1LgSPdbH2zcr4jwJosamygGJX5WDPdol9ucLqV_50N4CrLQi2iSY2rvsn7Ru_L3lD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362471512</pqid></control><display><type>article</type><title>Solvent effects on the π shape resonances of uracil</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cornetta, L. M. ; Coutinho, K. ; Varella, M. T. do N.</creator><creatorcontrib>Cornetta, L. M. ; Coutinho, K. ; Varella, M. T. do N.</creatorcontrib><description>We have investigated the effect of microsolvation on the π* shape resonances of uracil, referred to as π1* and π2* in the order of increasing energy. Our study considered uracil–water aggregates with six solvent molecules obtained from Monte Carlo simulations in the liquid phase. To explore the ensemble statistics, we combined scattering calculations, performed in the static exchange and static exchange plus polarization approximations, with linear regressions of virtual orbital energies to the scattering results. In general, the solvent molecules stabilize the anion states, and the lower lying π1* resonance becomes a bound state in most of the solute–water clusters. We also discuss how the strength of the H bonds can affect the energies of the anion states, in addition to the number and donor/acceptor characters of those bonds. The thermal distributions for the vertical attachment energies, obtained from 133 statistically uncorrelated solute–solvent clusters, are significantly broad in the energy scale of the autoionization widths. The distributions for the π1* and π2* anion states slightly overlap, thus giving rise to a quasi-continuum of attachment energies below ≲2.5 eV, in contrast to the gas phase picture of electron attachment to well separated resonances below the electronic excitation threshold. Both the stabilization of the anion states and the spread of attachment energies could be expected to favor the dissociative electron attachment processes believed to underlie the electron-induced damage to biomolecules.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5139459</identifier><identifier>PMID: 32113371</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anions ; Autoionization ; Biomolecules ; Bonding strength ; Clusters ; Computer simulation ; Electron attachment ; Electrons ; Exchanging ; Ions ; Liquid phases ; Physics ; Scattering ; Shape effects ; Solvent effect ; Solvents ; Uracil ; Vapor phases</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (8), p.084301-084301</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-eb894194dbc9594afec434f18bd98d44390744b3c7aae7c177ef1d532540db7c3</citedby><cites>FETCH-LOGICAL-c348t-eb894194dbc9594afec434f18bd98d44390744b3c7aae7c177ef1d532540db7c3</cites><orcidid>0000-0002-5812-0342 ; 0000-0001-7597-8327 ; 0000-0002-7586-3324 ; 0000000258120342 ; 0000000275863324 ; 0000000175978327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5139459$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32113371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornetta, L. M.</creatorcontrib><creatorcontrib>Coutinho, K.</creatorcontrib><creatorcontrib>Varella, M. T. do N.</creatorcontrib><title>Solvent effects on the π shape resonances of uracil</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have investigated the effect of microsolvation on the π* shape resonances of uracil, referred to as π1* and π2* in the order of increasing energy. Our study considered uracil–water aggregates with six solvent molecules obtained from Monte Carlo simulations in the liquid phase. To explore the ensemble statistics, we combined scattering calculations, performed in the static exchange and static exchange plus polarization approximations, with linear regressions of virtual orbital energies to the scattering results. In general, the solvent molecules stabilize the anion states, and the lower lying π1* resonance becomes a bound state in most of the solute–water clusters. We also discuss how the strength of the H bonds can affect the energies of the anion states, in addition to the number and donor/acceptor characters of those bonds. The thermal distributions for the vertical attachment energies, obtained from 133 statistically uncorrelated solute–solvent clusters, are significantly broad in the energy scale of the autoionization widths. The distributions for the π1* and π2* anion states slightly overlap, thus giving rise to a quasi-continuum of attachment energies below ≲2.5 eV, in contrast to the gas phase picture of electron attachment to well separated resonances below the electronic excitation threshold. Both the stabilization of the anion states and the spread of attachment energies could be expected to favor the dissociative electron attachment processes believed to underlie the electron-induced damage to biomolecules.</description><subject>Anions</subject><subject>Autoionization</subject><subject>Biomolecules</subject><subject>Bonding strength</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Electron attachment</subject><subject>Electrons</subject><subject>Exchanging</subject><subject>Ions</subject><subject>Liquid phases</subject><subject>Physics</subject><subject>Scattering</subject><subject>Shape effects</subject><subject>Solvent effect</subject><subject>Solvents</subject><subject>Uracil</subject><subject>Vapor phases</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCk-24ntEVX8kyoxAHPkOBc1VRoX20Fi4w15JVK1MDAw3XA_fXf6CDkFOgWa82uYZsC1yPQeGQNVOpW5pvtkTCmDVOc0H5GjEJaUUpBMHJIRZwCcSxgT8ezad-xignWNNobEdUlcYPL1mYSFWWPiMbjOdBaHVZ303timPSYHtWkDnuzmhLze3b7MHtL50_3j7GaeWi5UTLFUWoAWVWl1poUZDggualBlpVUlBNdUClFyK41BaUFKrKHKOMsErUpp-YRcbHPX3r31GGKxaoLFtjUduj4UjOdaKUYVHej5H7p0ve-G7zaKCQkZsEFdbpX1LgSPdbH2zcr4jwJosamygGJX5WDPdol9ucLqV_50N4CrLQi2iSY2rvsn7Ru_L3lD</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Cornetta, L. M.</creator><creator>Coutinho, K.</creator><creator>Varella, M. T. do N.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5812-0342</orcidid><orcidid>https://orcid.org/0000-0001-7597-8327</orcidid><orcidid>https://orcid.org/0000-0002-7586-3324</orcidid><orcidid>https://orcid.org/0000000258120342</orcidid><orcidid>https://orcid.org/0000000275863324</orcidid><orcidid>https://orcid.org/0000000175978327</orcidid></search><sort><creationdate>20200228</creationdate><title>Solvent effects on the π shape resonances of uracil</title><author>Cornetta, L. M. ; Coutinho, K. ; Varella, M. T. do N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-eb894194dbc9594afec434f18bd98d44390744b3c7aae7c177ef1d532540db7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anions</topic><topic>Autoionization</topic><topic>Biomolecules</topic><topic>Bonding strength</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Electron attachment</topic><topic>Electrons</topic><topic>Exchanging</topic><topic>Ions</topic><topic>Liquid phases</topic><topic>Physics</topic><topic>Scattering</topic><topic>Shape effects</topic><topic>Solvent effect</topic><topic>Solvents</topic><topic>Uracil</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornetta, L. M.</creatorcontrib><creatorcontrib>Coutinho, K.</creatorcontrib><creatorcontrib>Varella, M. T. do N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornetta, L. M.</au><au>Coutinho, K.</au><au>Varella, M. T. do N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent effects on the π shape resonances of uracil</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>152</volume><issue>8</issue><spage>084301</spage><epage>084301</epage><pages>084301-084301</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We have investigated the effect of microsolvation on the π* shape resonances of uracil, referred to as π1* and π2* in the order of increasing energy. Our study considered uracil–water aggregates with six solvent molecules obtained from Monte Carlo simulations in the liquid phase. To explore the ensemble statistics, we combined scattering calculations, performed in the static exchange and static exchange plus polarization approximations, with linear regressions of virtual orbital energies to the scattering results. In general, the solvent molecules stabilize the anion states, and the lower lying π1* resonance becomes a bound state in most of the solute–water clusters. We also discuss how the strength of the H bonds can affect the energies of the anion states, in addition to the number and donor/acceptor characters of those bonds. The thermal distributions for the vertical attachment energies, obtained from 133 statistically uncorrelated solute–solvent clusters, are significantly broad in the energy scale of the autoionization widths. The distributions for the π1* and π2* anion states slightly overlap, thus giving rise to a quasi-continuum of attachment energies below ≲2.5 eV, in contrast to the gas phase picture of electron attachment to well separated resonances below the electronic excitation threshold. Both the stabilization of the anion states and the spread of attachment energies could be expected to favor the dissociative electron attachment processes believed to underlie the electron-induced damage to biomolecules.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32113371</pmid><doi>10.1063/1.5139459</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5812-0342</orcidid><orcidid>https://orcid.org/0000-0001-7597-8327</orcidid><orcidid>https://orcid.org/0000-0002-7586-3324</orcidid><orcidid>https://orcid.org/0000000258120342</orcidid><orcidid>https://orcid.org/0000000275863324</orcidid><orcidid>https://orcid.org/0000000175978327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-02, Vol.152 (8), p.084301-084301
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5139459
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anions
Autoionization
Biomolecules
Bonding strength
Clusters
Computer simulation
Electron attachment
Electrons
Exchanging
Ions
Liquid phases
Physics
Scattering
Shape effects
Solvent effect
Solvents
Uracil
Vapor phases
title Solvent effects on the π shape resonances of uracil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20effects%20on%20the%20%CF%80%20shape%20resonances%20of%20uracil&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cornetta,%20L.%20M.&rft.date=2020-02-28&rft.volume=152&rft.issue=8&rft.spage=084301&rft.epage=084301&rft.pages=084301-084301&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5139459&rft_dat=%3Cproquest_scita%3E2369882080%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362471512&rft_id=info:pmid/32113371&rfr_iscdi=true