Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions

In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salleh, Siti Nur Alwani, Bachok, Norfifah, Arifin, Norihan Md, Ali, Fadzilah Md
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Salleh, Siti Nur Alwani
Bachok, Norfifah
Arifin, Norihan Md
Ali, Fadzilah Md
description In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.
doi_str_mv 10.1063/1.5136447
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321957622</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ff7577710c351147e2e5702085c583dffe4bcba165b0f895e2a75eff835083573</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTNI07VEW_4HgQQVvIU0TzdJNapNW9tvbsgvePAwzvPkxvHkIXQJZASnYDaw4sCLPxRFaAOeQiQKKY7QgpMozmrOPU3QW44YQWglRLlD3mlTtWpd2WHnV7qKLOFjslQ-2HVyDbRt-cKdiwgpvw-j8J05fzmNvTNMaHId6Y3TCKWAd_DiNbpzV3iptcB0G36h-N-8al1zw8RydWNVGc3HoS_R-f_e2fsyeXx6e1rfPWUc5S5m1ggshgGjGAXJhqOGCUFJyzUvWWGvyWtcKCl4TW1bcUCW4sbZknEwl2BJd7e92ffgeTExyE4Z-ejFKyihUXBSUTtT1noraJTUblF3vtpNlCUTOiUqQh0T_g8fQ_4Gyayz7BU6yeF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321957622</pqid></control><display><type>conference_proceeding</type><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><source>AIP Journals Complete</source><creator>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136447</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Boundary conditions ; Coefficient of friction ; Computational fluid dynamics ; Flow stability ; Fluid flow ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Skin friction ; Stability analysis ; Temperature profiles</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136447$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Salleh, Siti Nur Alwani</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><creatorcontrib>Arifin, Norihan Md</creatorcontrib><creatorcontrib>Ali, Fadzilah Md</creatorcontrib><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><title>AIP conference proceedings</title><description>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</description><subject>Aluminum oxide</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Skin friction</subject><subject>Stability analysis</subject><subject>Temperature profiles</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTNI07VEW_4HgQQVvIU0TzdJNapNW9tvbsgvePAwzvPkxvHkIXQJZASnYDaw4sCLPxRFaAOeQiQKKY7QgpMozmrOPU3QW44YQWglRLlD3mlTtWpd2WHnV7qKLOFjslQ-2HVyDbRt-cKdiwgpvw-j8J05fzmNvTNMaHId6Y3TCKWAd_DiNbpzV3iptcB0G36h-N-8al1zw8RydWNVGc3HoS_R-f_e2fsyeXx6e1rfPWUc5S5m1ggshgGjGAXJhqOGCUFJyzUvWWGvyWtcKCl4TW1bcUCW4sbZknEwl2BJd7e92ffgeTExyE4Z-ejFKyihUXBSUTtT1noraJTUblF3vtpNlCUTOiUqQh0T_g8fQ_4Gyayz7BU6yeF8</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Salleh, Siti Nur Alwani</creator><creator>Bachok, Norfifah</creator><creator>Arifin, Norihan Md</creator><creator>Ali, Fadzilah Md</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><author>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ff7577710c351147e2e5702085c583dffe4bcba165b0f895e2a75eff835083573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Skin friction</topic><topic>Stability analysis</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salleh, Siti Nur Alwani</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><creatorcontrib>Arifin, Norihan Md</creatorcontrib><creatorcontrib>Ali, Fadzilah Md</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salleh, Siti Nur Alwani</au><au>Bachok, Norfifah</au><au>Arifin, Norihan Md</au><au>Ali, Fadzilah Md</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136447</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136447
source AIP Journals Complete
subjects Aluminum oxide
Boundary conditions
Coefficient of friction
Computational fluid dynamics
Flow stability
Fluid flow
Nanofluids
Nanoparticles
Nonlinear equations
Ordinary differential equations
Parameters
Partial differential equations
Skin friction
Stability analysis
Temperature profiles
title Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20nanofluid%20flow%20past%20a%20moving%20thin%20needle%20subject%20to%20convective%20surface%20boundary%20conditions&rft.btitle=AIP%20conference%20proceedings&rft.au=Salleh,%20Siti%20Nur%20Alwani&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136447&rft_dat=%3Cproquest_scita%3E2321957622%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321957622&rft_id=info:pmid/&rfr_iscdi=true