Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions
In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equation...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2184 |
creator | Salleh, Siti Nur Alwani Bachok, Norfifah Arifin, Norihan Md Ali, Fadzilah Md |
description | In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant. |
doi_str_mv | 10.1063/1.5136447 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321957622</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ff7577710c351147e2e5702085c583dffe4bcba165b0f895e2a75eff835083573</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTNI07VEW_4HgQQVvIU0TzdJNapNW9tvbsgvePAwzvPkxvHkIXQJZASnYDaw4sCLPxRFaAOeQiQKKY7QgpMozmrOPU3QW44YQWglRLlD3mlTtWpd2WHnV7qKLOFjslQ-2HVyDbRt-cKdiwgpvw-j8J05fzmNvTNMaHId6Y3TCKWAd_DiNbpzV3iptcB0G36h-N-8al1zw8RydWNVGc3HoS_R-f_e2fsyeXx6e1rfPWUc5S5m1ggshgGjGAXJhqOGCUFJyzUvWWGvyWtcKCl4TW1bcUCW4sbZknEwl2BJd7e92ffgeTExyE4Z-ejFKyihUXBSUTtT1noraJTUblF3vtpNlCUTOiUqQh0T_g8fQ_4Gyayz7BU6yeF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321957622</pqid></control><display><type>conference_proceeding</type><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><source>AIP Journals Complete</source><creator>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136447</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Boundary conditions ; Coefficient of friction ; Computational fluid dynamics ; Flow stability ; Fluid flow ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Skin friction ; Stability analysis ; Temperature profiles</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136447$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Salleh, Siti Nur Alwani</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><creatorcontrib>Arifin, Norihan Md</creatorcontrib><creatorcontrib>Ali, Fadzilah Md</creatorcontrib><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><title>AIP conference proceedings</title><description>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</description><subject>Aluminum oxide</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Skin friction</subject><subject>Stability analysis</subject><subject>Temperature profiles</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTNI07VEW_4HgQQVvIU0TzdJNapNW9tvbsgvePAwzvPkxvHkIXQJZASnYDaw4sCLPxRFaAOeQiQKKY7QgpMozmrOPU3QW44YQWglRLlD3mlTtWpd2WHnV7qKLOFjslQ-2HVyDbRt-cKdiwgpvw-j8J05fzmNvTNMaHId6Y3TCKWAd_DiNbpzV3iptcB0G36h-N-8al1zw8RydWNVGc3HoS_R-f_e2fsyeXx6e1rfPWUc5S5m1ggshgGjGAXJhqOGCUFJyzUvWWGvyWtcKCl4TW1bcUCW4sbZknEwl2BJd7e92ffgeTExyE4Z-ejFKyihUXBSUTtT1noraJTUblF3vtpNlCUTOiUqQh0T_g8fQ_4Gyayz7BU6yeF8</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Salleh, Siti Nur Alwani</creator><creator>Bachok, Norfifah</creator><creator>Arifin, Norihan Md</creator><creator>Ali, Fadzilah Md</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</title><author>Salleh, Siti Nur Alwani ; Bachok, Norfifah ; Arifin, Norihan Md ; Ali, Fadzilah Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ff7577710c351147e2e5702085c583dffe4bcba165b0f895e2a75eff835083573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Skin friction</topic><topic>Stability analysis</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salleh, Siti Nur Alwani</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><creatorcontrib>Arifin, Norihan Md</creatorcontrib><creatorcontrib>Ali, Fadzilah Md</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salleh, Siti Nur Alwani</au><au>Bachok, Norfifah</au><au>Arifin, Norihan Md</au><au>Ali, Fadzilah Md</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this research, the heat transfer performance of a nanofluid past a moving thin needle in the presence of thermal boundary condition is investigated. Three different types of nanoparticles, namely copper, alumina and titania are taken into consideration. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation. These equations are then solved numerically using bvp4c package in MATLAB software. The effect of the involved parameters of interest, including nanoparticle volume fraction, needle thickness, velocity ratio and convective parameter on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs. The stability of the dual solutions obtained has been conducted to know which of the upper branch or lower branch solution is linearly stable and physically relevant.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136447</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2184 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5136447 |
source | AIP Journals Complete |
subjects | Aluminum oxide Boundary conditions Coefficient of friction Computational fluid dynamics Flow stability Fluid flow Nanofluids Nanoparticles Nonlinear equations Ordinary differential equations Parameters Partial differential equations Skin friction Stability analysis Temperature profiles |
title | Stability analysis of nanofluid flow past a moving thin needle subject to convective surface boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20nanofluid%20flow%20past%20a%20moving%20thin%20needle%20subject%20to%20convective%20surface%20boundary%20conditions&rft.btitle=AIP%20conference%20proceedings&rft.au=Salleh,%20Siti%20Nur%20Alwani&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136447&rft_dat=%3Cproquest_scita%3E2321957622%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321957622&rft_id=info:pmid/&rfr_iscdi=true |