Nilpotent groups having a maximal irredundant 11-covering with core-free intersection

Let G be a finite group. A covering of G is a collection of proper subgroups of G whose union is equal to the entire G. If the number of proper subgroups in the covering is n, then the covering is called an n-covering. Considering that no group can be covered by two of its proper subgroups, n ≥ 3. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarmizi, Rawdah Adawiyah, Sulaiman, Hajar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Tarmizi, Rawdah Adawiyah
Sulaiman, Hajar
description Let G be a finite group. A covering of G is a collection of proper subgroups of G whose union is equal to the entire G. If the number of proper subgroups in the covering is n, then the covering is called an n-covering. Considering that no group can be covered by two of its proper subgroups, n ≥ 3. An n-covering is called irredundant if no proper sub-collection of subgroups from the covering is able to cover G. If all members of an n-covering are maximal normal subgroups of G, then the covering is called a maximal n-covering. Let D be the intersection of all members of an n-covering. Then, the covering is said to have a core-free intersection if ∩g∈G gDg−1 = {1}. This paper characterizes nilpotent groups having a maximal irredundant 11-covering with a core-free intersection. It was found that a nilpotent group G has a maximal irredundant 11-covering with a core-free intersection if and only if it is isomorphic to (C2)10, (C3)5, (C3)6, (C5)3 or (C5)4.
doi_str_mv 10.1063/1.5136368
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321956115</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-f1e6ffb6e4610408b0994d35d9833022d0cd7eb549d1cfd0e24c129dde8ecd8b3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pwW9Q8CZ05kmatDnK8A2GXhx4C23ydMvompqmU7-9HRt48_Rcfs_bn5BroDOgkt_BTACXXBYnZAJCQJpLkKdkQqnKUpbxj3Ny0fcbSpnK82JClq-u6XzENiar4IeuT9blzrWrpEy25bfblk3iQkA7tLYcDUBq_A7DXny5uE6MD5jWATFxbcTQo4nOt5fkrC6bHq-OdUqWjw_v8-d08fb0Mr9fpB0TPKY1oKzrSmImgWa0qKhSmeXCqoJzypilxuZYiUxZMLWlyDIDTFmLBRpbVHxKbg5zu-A_B-yj3vghtONKzTgDJSSAGNXtQfXGxXJ_n-7C-Fr40TsfNOhjZLqz9X8YqN5n_NfAfwF1M27S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321956115</pqid></control><display><type>conference_proceeding</type><title>Nilpotent groups having a maximal irredundant 11-covering with core-free intersection</title><source>AIP Journals Complete</source><creator>Tarmizi, Rawdah Adawiyah ; Sulaiman, Hajar</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Tarmizi, Rawdah Adawiyah ; Sulaiman, Hajar ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>Let G be a finite group. A covering of G is a collection of proper subgroups of G whose union is equal to the entire G. If the number of proper subgroups in the covering is n, then the covering is called an n-covering. Considering that no group can be covered by two of its proper subgroups, n ≥ 3. An n-covering is called irredundant if no proper sub-collection of subgroups from the covering is able to cover G. If all members of an n-covering are maximal normal subgroups of G, then the covering is called a maximal n-covering. Let D be the intersection of all members of an n-covering. Then, the covering is said to have a core-free intersection if ∩g∈G gDg−1 = {1}. This paper characterizes nilpotent groups having a maximal irredundant 11-covering with a core-free intersection. It was found that a nilpotent group G has a maximal irredundant 11-covering with a core-free intersection if and only if it is isomorphic to (C2)10, (C3)5, (C3)6, (C5)3 or (C5)4.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136368</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Collection ; Subgroups</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136368$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Tarmizi, Rawdah Adawiyah</creatorcontrib><creatorcontrib>Sulaiman, Hajar</creatorcontrib><title>Nilpotent groups having a maximal irredundant 11-covering with core-free intersection</title><title>AIP conference proceedings</title><description>Let G be a finite group. A covering of G is a collection of proper subgroups of G whose union is equal to the entire G. If the number of proper subgroups in the covering is n, then the covering is called an n-covering. Considering that no group can be covered by two of its proper subgroups, n ≥ 3. An n-covering is called irredundant if no proper sub-collection of subgroups from the covering is able to cover G. If all members of an n-covering are maximal normal subgroups of G, then the covering is called a maximal n-covering. Let D be the intersection of all members of an n-covering. Then, the covering is said to have a core-free intersection if ∩g∈G gDg−1 = {1}. This paper characterizes nilpotent groups having a maximal irredundant 11-covering with a core-free intersection. It was found that a nilpotent group G has a maximal irredundant 11-covering with a core-free intersection if and only if it is isomorphic to (C2)10, (C3)5, (C3)6, (C5)3 or (C5)4.</description><subject>Collection</subject><subject>Subgroups</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LwzAYB_AgCs7pwW9Q8CZ05kmatDnK8A2GXhx4C23ydMvompqmU7-9HRt48_Rcfs_bn5BroDOgkt_BTACXXBYnZAJCQJpLkKdkQqnKUpbxj3Ny0fcbSpnK82JClq-u6XzENiar4IeuT9blzrWrpEy25bfblk3iQkA7tLYcDUBq_A7DXny5uE6MD5jWATFxbcTQo4nOt5fkrC6bHq-OdUqWjw_v8-d08fb0Mr9fpB0TPKY1oKzrSmImgWa0qKhSmeXCqoJzypilxuZYiUxZMLWlyDIDTFmLBRpbVHxKbg5zu-A_B-yj3vghtONKzTgDJSSAGNXtQfXGxXJ_n-7C-Fr40TsfNOhjZLqz9X8YqN5n_NfAfwF1M27S</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Tarmizi, Rawdah Adawiyah</creator><creator>Sulaiman, Hajar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Nilpotent groups having a maximal irredundant 11-covering with core-free intersection</title><author>Tarmizi, Rawdah Adawiyah ; Sulaiman, Hajar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-f1e6ffb6e4610408b0994d35d9833022d0cd7eb549d1cfd0e24c129dde8ecd8b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collection</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarmizi, Rawdah Adawiyah</creatorcontrib><creatorcontrib>Sulaiman, Hajar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarmizi, Rawdah Adawiyah</au><au>Sulaiman, Hajar</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nilpotent groups having a maximal irredundant 11-covering with core-free intersection</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let G be a finite group. A covering of G is a collection of proper subgroups of G whose union is equal to the entire G. If the number of proper subgroups in the covering is n, then the covering is called an n-covering. Considering that no group can be covered by two of its proper subgroups, n ≥ 3. An n-covering is called irredundant if no proper sub-collection of subgroups from the covering is able to cover G. If all members of an n-covering are maximal normal subgroups of G, then the covering is called a maximal n-covering. Let D be the intersection of all members of an n-covering. Then, the covering is said to have a core-free intersection if ∩g∈G gDg−1 = {1}. This paper characterizes nilpotent groups having a maximal irredundant 11-covering with a core-free intersection. It was found that a nilpotent group G has a maximal irredundant 11-covering with a core-free intersection if and only if it is isomorphic to (C2)10, (C3)5, (C3)6, (C5)3 or (C5)4.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136368</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136368
source AIP Journals Complete
subjects Collection
Subgroups
title Nilpotent groups having a maximal irredundant 11-covering with core-free intersection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nilpotent%20groups%20having%20a%20maximal%20irredundant%2011-covering%20with%20core-free%20intersection&rft.btitle=AIP%20conference%20proceedings&rft.au=Tarmizi,%20Rawdah%20Adawiyah&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136368&rft_dat=%3Cproquest_scita%3E2321956115%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321956115&rft_id=info:pmid/&rfr_iscdi=true