New cryptanalytic results upon prime power moduli N = prq

In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shehu, Sadiq, Ariffin, Muhammad Rezal Kamel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Shehu, Sadiq
Ariffin, Muhammad Rezal Kamel
description In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.
doi_str_mv 10.1063/1.5136365
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321961355</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-7da12043acb1f4aae45168b58be2658fb0fd1700d6d42eab85c6d80f997e78f33</originalsourceid><addsrcrecordid>eNotkE9LwzAchoMoWKcHv0HAm9CZX9L86cGDDKfCmJcdvIW0TaCja7MkZfTb27GdXnh5eXl4EHoGsgQi2BssOTDBBL9BGXAOuRQgblFGSFnktGB_9-ghxj0htJRSZajc2hOuw-ST6U03pbbGwcaxSxGPfuixD-3BYj-cbMCHoRm7Fm_x-1wfH9GdM120T9dcoN36c7f6zje_Xz-rj03uBeO5bAxQUjBTV-AKY2zBQaiKq8pSwZWriGtAEtKIpqDWVIrXolHElaW0UjnGFujlcuvDcBxtTHo_jGFmjZoyCqUAxvm8er2sYt0mk9qh12dyEyYNRJ_NaNBXM-wfl-RUbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321961355</pqid></control><display><type>conference_proceeding</type><title>New cryptanalytic results upon prime power moduli N = prq</title><source>AIP Journals Complete</source><creator>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136365</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Energy management ; Polynomials ; Supermarkets</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136365$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Shehu, Sadiq</creatorcontrib><creatorcontrib>Ariffin, Muhammad Rezal Kamel</creatorcontrib><title>New cryptanalytic results upon prime power moduli N = prq</title><title>AIP Conference Proceedings</title><description>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</description><subject>Algorithms</subject><subject>Energy management</subject><subject>Polynomials</subject><subject>Supermarkets</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LwzAchoMoWKcHv0HAm9CZX9L86cGDDKfCmJcdvIW0TaCja7MkZfTb27GdXnh5eXl4EHoGsgQi2BssOTDBBL9BGXAOuRQgblFGSFnktGB_9-ghxj0htJRSZajc2hOuw-ST6U03pbbGwcaxSxGPfuixD-3BYj-cbMCHoRm7Fm_x-1wfH9GdM120T9dcoN36c7f6zje_Xz-rj03uBeO5bAxQUjBTV-AKY2zBQaiKq8pSwZWriGtAEtKIpqDWVIrXolHElaW0UjnGFujlcuvDcBxtTHo_jGFmjZoyCqUAxvm8er2sYt0mk9qh12dyEyYNRJ_NaNBXM-wfl-RUbQ</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Shehu, Sadiq</creator><creator>Ariffin, Muhammad Rezal Kamel</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>New cryptanalytic results upon prime power moduli N = prq</title><author>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-7da12043acb1f4aae45168b58be2658fb0fd1700d6d42eab85c6d80f997e78f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Energy management</topic><topic>Polynomials</topic><topic>Supermarkets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shehu, Sadiq</creatorcontrib><creatorcontrib>Ariffin, Muhammad Rezal Kamel</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shehu, Sadiq</au><au>Ariffin, Muhammad Rezal Kamel</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New cryptanalytic results upon prime power moduli N = prq</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136365</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136365
source AIP Journals Complete
subjects Algorithms
Energy management
Polynomials
Supermarkets
title New cryptanalytic results upon prime power moduli N = prq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20cryptanalytic%20results%20upon%20prime%20power%20moduli%20N%20=%20prq&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Shehu,%20Sadiq&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136365&rft_dat=%3Cproquest_scita%3E2321961355%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321961355&rft_id=info:pmid/&rfr_iscdi=true