New cryptanalytic results upon prime power moduli N = prq
In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2184 |
creator | Shehu, Sadiq Ariffin, Muhammad Rezal Kamel |
description | In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni. |
doi_str_mv | 10.1063/1.5136365 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321961355</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-7da12043acb1f4aae45168b58be2658fb0fd1700d6d42eab85c6d80f997e78f33</originalsourceid><addsrcrecordid>eNotkE9LwzAchoMoWKcHv0HAm9CZX9L86cGDDKfCmJcdvIW0TaCja7MkZfTb27GdXnh5eXl4EHoGsgQi2BssOTDBBL9BGXAOuRQgblFGSFnktGB_9-ghxj0htJRSZajc2hOuw-ST6U03pbbGwcaxSxGPfuixD-3BYj-cbMCHoRm7Fm_x-1wfH9GdM120T9dcoN36c7f6zje_Xz-rj03uBeO5bAxQUjBTV-AKY2zBQaiKq8pSwZWriGtAEtKIpqDWVIrXolHElaW0UjnGFujlcuvDcBxtTHo_jGFmjZoyCqUAxvm8er2sYt0mk9qh12dyEyYNRJ_NaNBXM-wfl-RUbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321961355</pqid></control><display><type>conference_proceeding</type><title>New cryptanalytic results upon prime power moduli N = prq</title><source>AIP Journals Complete</source><creator>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136365</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Energy management ; Polynomials ; Supermarkets</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136365$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Shehu, Sadiq</creatorcontrib><creatorcontrib>Ariffin, Muhammad Rezal Kamel</creatorcontrib><title>New cryptanalytic results upon prime power moduli N = prq</title><title>AIP Conference Proceedings</title><description>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</description><subject>Algorithms</subject><subject>Energy management</subject><subject>Polynomials</subject><subject>Supermarkets</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LwzAchoMoWKcHv0HAm9CZX9L86cGDDKfCmJcdvIW0TaCja7MkZfTb27GdXnh5eXl4EHoGsgQi2BssOTDBBL9BGXAOuRQgblFGSFnktGB_9-ghxj0htJRSZajc2hOuw-ST6U03pbbGwcaxSxGPfuixD-3BYj-cbMCHoRm7Fm_x-1wfH9GdM120T9dcoN36c7f6zje_Xz-rj03uBeO5bAxQUjBTV-AKY2zBQaiKq8pSwZWriGtAEtKIpqDWVIrXolHElaW0UjnGFujlcuvDcBxtTHo_jGFmjZoyCqUAxvm8er2sYt0mk9qh12dyEyYNRJ_NaNBXM-wfl-RUbQ</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Shehu, Sadiq</creator><creator>Ariffin, Muhammad Rezal Kamel</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>New cryptanalytic results upon prime power moduli N = prq</title><author>Shehu, Sadiq ; Ariffin, Muhammad Rezal Kamel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-7da12043acb1f4aae45168b58be2658fb0fd1700d6d42eab85c6d80f997e78f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Energy management</topic><topic>Polynomials</topic><topic>Supermarkets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shehu, Sadiq</creatorcontrib><creatorcontrib>Ariffin, Muhammad Rezal Kamel</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shehu, Sadiq</au><au>Ariffin, Muhammad Rezal Kamel</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New cryptanalytic results upon prime power moduli N = prq</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper we propose three attacks on the prime power modulus N = prq for r ≥ 2. The first attack is based on the equation eX − NY +(qr + pru)Y = Z for suitable positive integer u. Using continued fraction we show that YX can be recovered among the convergents of the continued fraction expansion of eN. Also we show that the number of such exponents is at least N5r−76(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence one can factor the prime power modulus N = prq in polynomial time. For i = 1,…,k, with k ≥ 2 and r ≥ 2 the second and third attacks works when attacks k RSA public keys (Ni, ei) are such that there exist k relations of the form eix−Niyi+(qir+piru)yi=zi or of the shape eixi−Niy+(qir+piru)y=zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. Based on LLL algorithm we show that our attack enable us to simultaneously factor the k prime power RSA moduli Ni.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136365</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2019, Vol.2184 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5136365 |
source | AIP Journals Complete |
subjects | Algorithms Energy management Polynomials Supermarkets |
title | New cryptanalytic results upon prime power moduli N = prq |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20cryptanalytic%20results%20upon%20prime%20power%20moduli%20N%20=%20prq&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Shehu,%20Sadiq&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136365&rft_dat=%3Cproquest_scita%3E2321961355%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321961355&rft_id=info:pmid/&rfr_iscdi=true |