Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy

Measurement of electrostatic force at the micro-/nanoscale has a great scientific value and engineering significance. This paper develops a new determination method of electrostatic forces based on Kelvin probe force mode in atomic force microscopy (AFM). Applying DC voltage and AC voltage simultane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-01, Vol.10 (1), p.015143-015143-9
Hauptverfasser: Wang, Kesheng, Lu, Yijia, Cheng, Jia, Zhu, Xiaoying, Ji, Linhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015143-9
container_issue 1
container_start_page 015143
container_title AIP advances
container_volume 10
creator Wang, Kesheng
Lu, Yijia
Cheng, Jia
Zhu, Xiaoying
Ji, Linhong
description Measurement of electrostatic force at the micro-/nanoscale has a great scientific value and engineering significance. This paper develops a new determination method of electrostatic forces based on Kelvin probe force mode in atomic force microscopy (AFM). Applying DC voltage and AC voltage simultaneously, we measured the oscillation amplitudes of the probe at two specific frequencies. By the equivalent parallel-plate capacitor model and the vibration theory, we established quantitative relationship between electrostatic force and AFM raw data, and derived a complete and practical formula for calculating electrostatic force. Then, the fundamental characteristics of electrostatic force with time were revealed, and the changes of all components of electrostatic force with tip–sample distance and applied AC peak voltage were discussed in detail. The regulation effects of the distance and the voltage on the total electrostatic force were also compared. Furthermore, we pointed out the main advantages and disadvantages of this method and stated the applicable conditions of the conclusions according to the experimental results and theoretical analysis.
doi_str_mv 10.1063/1.5136332
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_94a8c43c84ae430cbca526b2cc75e140</doaj_id><sourcerecordid>2343336707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-fe8a1862103e303ce3ff14ceca62dd586ea17587c77baecd9ec4c9696fb22d343</originalsourceid><addsrcrecordid>eNqdkU9r3jAMxsPYoKXtod8gsNMGb-t_cZzjKFtXKJTBdjaKrHR-SeLMdgrdoZ99fpuy7jxdJIsfz2NJVXXO2QVnWl7yi4ZLLaV4Ux0L3pidFEK__ac-qs5S2rMSquPMqOPq6dsKc_YZsn-gmkbCHEM6PLEeQkSqJ4K0RppozjXMrsafEAEzRf-7UGGue0jk6lKEhH4ctyZMy-jz6qhek5_va8hhepX0WEwwLI-n1bsBxkRnL_mk-vHl8_err7vbu-ubq0-3O1TC5N1ABrjRgjNJkkkkOQxcISFo4VxjNAFvG9Ni2_ZA6DpChZ3u9NAL4aSSJ9XNpusC7O0S_QTx0Qbw9rkR4r2FWGYeyXYKDCqJRgEpybBHaITuBWLbEFesaL3ftJYYfq2Ust2HNc7l-1YUKyl1y9pCfdiow6gp0vDXlTN7uJbl9uVahf24sWWB-Xl__wc_hPgK2sUN8g-vMqYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343336707</pqid></control><display><type>article</type><title>Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Kesheng ; Lu, Yijia ; Cheng, Jia ; Zhu, Xiaoying ; Ji, Linhong</creator><creatorcontrib>Wang, Kesheng ; Lu, Yijia ; Cheng, Jia ; Zhu, Xiaoying ; Ji, Linhong</creatorcontrib><description>Measurement of electrostatic force at the micro-/nanoscale has a great scientific value and engineering significance. This paper develops a new determination method of electrostatic forces based on Kelvin probe force mode in atomic force microscopy (AFM). Applying DC voltage and AC voltage simultaneously, we measured the oscillation amplitudes of the probe at two specific frequencies. By the equivalent parallel-plate capacitor model and the vibration theory, we established quantitative relationship between electrostatic force and AFM raw data, and derived a complete and practical formula for calculating electrostatic force. Then, the fundamental characteristics of electrostatic force with time were revealed, and the changes of all components of electrostatic force with tip–sample distance and applied AC peak voltage were discussed in detail. The regulation effects of the distance and the voltage on the total electrostatic force were also compared. Furthermore, we pointed out the main advantages and disadvantages of this method and stated the applicable conditions of the conclusions according to the experimental results and theoretical analysis.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5136332</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Atomic force microscopy ; Electric potential ; Force measurement ; Microscopes ; Microscopy ; Voltage</subject><ispartof>AIP advances, 2020-01, Vol.10 (1), p.015143-015143-9</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-fe8a1862103e303ce3ff14ceca62dd586ea17587c77baecd9ec4c9696fb22d343</citedby><cites>FETCH-LOGICAL-c428t-fe8a1862103e303ce3ff14ceca62dd586ea17587c77baecd9ec4c9696fb22d343</cites><orcidid>0000-0002-2557-0072 ; 0000-0003-4533-4285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27907,27908</link.rule.ids></links><search><creatorcontrib>Wang, Kesheng</creatorcontrib><creatorcontrib>Lu, Yijia</creatorcontrib><creatorcontrib>Cheng, Jia</creatorcontrib><creatorcontrib>Zhu, Xiaoying</creatorcontrib><creatorcontrib>Ji, Linhong</creatorcontrib><title>Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy</title><title>AIP advances</title><description>Measurement of electrostatic force at the micro-/nanoscale has a great scientific value and engineering significance. This paper develops a new determination method of electrostatic forces based on Kelvin probe force mode in atomic force microscopy (AFM). Applying DC voltage and AC voltage simultaneously, we measured the oscillation amplitudes of the probe at two specific frequencies. By the equivalent parallel-plate capacitor model and the vibration theory, we established quantitative relationship between electrostatic force and AFM raw data, and derived a complete and practical formula for calculating electrostatic force. Then, the fundamental characteristics of electrostatic force with time were revealed, and the changes of all components of electrostatic force with tip–sample distance and applied AC peak voltage were discussed in detail. The regulation effects of the distance and the voltage on the total electrostatic force were also compared. Furthermore, we pointed out the main advantages and disadvantages of this method and stated the applicable conditions of the conclusions according to the experimental results and theoretical analysis.</description><subject>Amplitudes</subject><subject>Atomic force microscopy</subject><subject>Electric potential</subject><subject>Force measurement</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Voltage</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkU9r3jAMxsPYoKXtod8gsNMGb-t_cZzjKFtXKJTBdjaKrHR-SeLMdgrdoZ99fpuy7jxdJIsfz2NJVXXO2QVnWl7yi4ZLLaV4Ux0L3pidFEK__ac-qs5S2rMSquPMqOPq6dsKc_YZsn-gmkbCHEM6PLEeQkSqJ4K0RppozjXMrsafEAEzRf-7UGGue0jk6lKEhH4ctyZMy-jz6qhek5_va8hhepX0WEwwLI-n1bsBxkRnL_mk-vHl8_err7vbu-ubq0-3O1TC5N1ABrjRgjNJkkkkOQxcISFo4VxjNAFvG9Ni2_ZA6DpChZ3u9NAL4aSSJ9XNpusC7O0S_QTx0Qbw9rkR4r2FWGYeyXYKDCqJRgEpybBHaITuBWLbEFesaL3ftJYYfq2Ust2HNc7l-1YUKyl1y9pCfdiow6gp0vDXlTN7uJbl9uVahf24sWWB-Xl__wc_hPgK2sUN8g-vMqYo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Kesheng</creator><creator>Lu, Yijia</creator><creator>Cheng, Jia</creator><creator>Zhu, Xiaoying</creator><creator>Ji, Linhong</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2557-0072</orcidid><orcidid>https://orcid.org/0000-0003-4533-4285</orcidid></search><sort><creationdate>20200101</creationdate><title>Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy</title><author>Wang, Kesheng ; Lu, Yijia ; Cheng, Jia ; Zhu, Xiaoying ; Ji, Linhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-fe8a1862103e303ce3ff14ceca62dd586ea17587c77baecd9ec4c9696fb22d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Atomic force microscopy</topic><topic>Electric potential</topic><topic>Force measurement</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kesheng</creatorcontrib><creatorcontrib>Lu, Yijia</creatorcontrib><creatorcontrib>Cheng, Jia</creatorcontrib><creatorcontrib>Zhu, Xiaoying</creatorcontrib><creatorcontrib>Ji, Linhong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kesheng</au><au>Lu, Yijia</au><au>Cheng, Jia</au><au>Zhu, Xiaoying</au><au>Ji, Linhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy</atitle><jtitle>AIP advances</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>015143</spage><epage>015143-9</epage><pages>015143-015143-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Measurement of electrostatic force at the micro-/nanoscale has a great scientific value and engineering significance. This paper develops a new determination method of electrostatic forces based on Kelvin probe force mode in atomic force microscopy (AFM). Applying DC voltage and AC voltage simultaneously, we measured the oscillation amplitudes of the probe at two specific frequencies. By the equivalent parallel-plate capacitor model and the vibration theory, we established quantitative relationship between electrostatic force and AFM raw data, and derived a complete and practical formula for calculating electrostatic force. Then, the fundamental characteristics of electrostatic force with time were revealed, and the changes of all components of electrostatic force with tip–sample distance and applied AC peak voltage were discussed in detail. The regulation effects of the distance and the voltage on the total electrostatic force were also compared. Furthermore, we pointed out the main advantages and disadvantages of this method and stated the applicable conditions of the conclusions according to the experimental results and theoretical analysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136332</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2557-0072</orcidid><orcidid>https://orcid.org/0000-0003-4533-4285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2020-01, Vol.10 (1), p.015143-015143-9
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_5136332
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amplitudes
Atomic force microscopy
Electric potential
Force measurement
Microscopes
Microscopy
Voltage
title Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20electrostatic%20force%20measurement%20and%20characterization%20based%20on%20oscillation%20amplitude%20using%20atomic%20force%20microscopy&rft.jtitle=AIP%20advances&rft.au=Wang,%20Kesheng&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=015143&rft.epage=015143-9&rft.pages=015143-015143-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5136332&rft_dat=%3Cproquest_scita%3E2343336707%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343336707&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_94a8c43c84ae430cbca526b2cc75e140&rfr_iscdi=true