Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space

In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boudjerida, Assia, Seba, Djamila, Laoubi, Karima
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2183
creator Boudjerida, Assia
Seba, Djamila
Laoubi, Karima
description In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the Hille-Yosida condition. The main tool is an appropriate fixed point theorem, integrated semigroup, and the known facts about fractional calculus.
doi_str_mv 10.1063/1.5136181
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322246417</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-c5528aa613ce04349644ac9e926a7b2eba7c20e97445e92e45869134522ef65d3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKsH_0HAm7A137t7lOIXFLwoeFvS7ARS0mRNsoX-BP-1W1rw5mmGl2de5p1B6JaSBSWKP9CFpFzRhp6hGZWSVrWi6hzNCGlFxQT_ukRXOW8IYW1dNzP0s4yhpOi9Xjvvyh4nyKMvGduYcIihh5DB73EP1gXosdsOo89uB9gmbYqLQfsqph4StmM4CTjDdnILoBPunbWQIBQ36S4YP-aJyVOL9TqXgwnOgzZwjS6s9hluTnWOPp-fPpav1er95W35uKoG1jSlMlKyRmtFuQEiuGiVENq00DKl6zWDta4NI9DWQshJBCEb1VIuJGNglez5HN0dfYcUv0fIpdvEMU1b545xxphQgtYTdX-ksnFFH2J1Q3JbnfbdLqaOdqczd0Nv_4Mp6Q5_-Rvgv3Gcguo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2322246417</pqid></control><display><type>conference_proceeding</type><title>Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space</title><source>AIP Journals Complete</source><creator>Boudjerida, Assia ; Seba, Djamila ; Laoubi, Karima</creator><contributor>Sengul Kandemir, Hacer ; Uyaver, Sahin ; Harte, Robin ; Cagatay Ucgun, Filiz ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Gurtug, Ozay ; Sakalli, Izzet ; Gul, Ilhan ; Akyel, Tugba ; Ashyralyev, Allaberen ; Cavalcanti, Marcelo Moreira ; Turkoglu, Duran ; Sahin, Hakan ; Tez, Mujgan ; Erkoc Yılmazturk, Temha ; Domingos Cavalcanti, Valéria Neves ; Canak, Ibrahim</contributor><creatorcontrib>Boudjerida, Assia ; Seba, Djamila ; Laoubi, Karima ; Sengul Kandemir, Hacer ; Uyaver, Sahin ; Harte, Robin ; Cagatay Ucgun, Filiz ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Cakalli, Huseyin ; Gurtug, Ozay ; Sakalli, Izzet ; Gul, Ilhan ; Akyel, Tugba ; Ashyralyev, Allaberen ; Cavalcanti, Marcelo Moreira ; Turkoglu, Duran ; Sahin, Hakan ; Tez, Mujgan ; Erkoc Yılmazturk, Temha ; Domingos Cavalcanti, Valéria Neves ; Canak, Ibrahim</creatorcontrib><description>In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the Hille-Yosida condition. The main tool is an appropriate fixed point theorem, integrated semigroup, and the known facts about fractional calculus.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136181</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Controllability ; Fixed points (mathematics) ; Fractional calculus ; Inclusions ; Operators (mathematics)</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2183 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136181$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Sengul Kandemir, Hacer</contributor><contributor>Uyaver, Sahin</contributor><contributor>Harte, Robin</contributor><contributor>Cagatay Ucgun, Filiz</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Gurtug, Ozay</contributor><contributor>Sakalli, Izzet</contributor><contributor>Gul, Ilhan</contributor><contributor>Akyel, Tugba</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Cavalcanti, Marcelo Moreira</contributor><contributor>Turkoglu, Duran</contributor><contributor>Sahin, Hakan</contributor><contributor>Tez, Mujgan</contributor><contributor>Erkoc Yılmazturk, Temha</contributor><contributor>Domingos Cavalcanti, Valéria Neves</contributor><contributor>Canak, Ibrahim</contributor><creatorcontrib>Boudjerida, Assia</creatorcontrib><creatorcontrib>Seba, Djamila</creatorcontrib><creatorcontrib>Laoubi, Karima</creatorcontrib><title>Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space</title><title>AIP Conference Proceedings</title><description>In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the Hille-Yosida condition. The main tool is an appropriate fixed point theorem, integrated semigroup, and the known facts about fractional calculus.</description><subject>Controllability</subject><subject>Fixed points (mathematics)</subject><subject>Fractional calculus</subject><subject>Inclusions</subject><subject>Operators (mathematics)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kU1LAzEQhoMoWKsH_0HAm7A137t7lOIXFLwoeFvS7ARS0mRNsoX-BP-1W1rw5mmGl2de5p1B6JaSBSWKP9CFpFzRhp6hGZWSVrWi6hzNCGlFxQT_ukRXOW8IYW1dNzP0s4yhpOi9Xjvvyh4nyKMvGduYcIihh5DB73EP1gXosdsOo89uB9gmbYqLQfsqph4StmM4CTjDdnILoBPunbWQIBQ36S4YP-aJyVOL9TqXgwnOgzZwjS6s9hluTnWOPp-fPpav1er95W35uKoG1jSlMlKyRmtFuQEiuGiVENq00DKl6zWDta4NI9DWQshJBCEb1VIuJGNglez5HN0dfYcUv0fIpdvEMU1b545xxphQgtYTdX-ksnFFH2J1Q3JbnfbdLqaOdqczd0Nv_4Mp6Q5_-Rvgv3Gcguo</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Boudjerida, Assia</creator><creator>Seba, Djamila</creator><creator>Laoubi, Karima</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191206</creationdate><title>Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space</title><author>Boudjerida, Assia ; Seba, Djamila ; Laoubi, Karima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-c5528aa613ce04349644ac9e926a7b2eba7c20e97445e92e45869134522ef65d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Controllability</topic><topic>Fixed points (mathematics)</topic><topic>Fractional calculus</topic><topic>Inclusions</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudjerida, Assia</creatorcontrib><creatorcontrib>Seba, Djamila</creatorcontrib><creatorcontrib>Laoubi, Karima</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudjerida, Assia</au><au>Seba, Djamila</au><au>Laoubi, Karima</au><au>Sengul Kandemir, Hacer</au><au>Uyaver, Sahin</au><au>Harte, Robin</au><au>Cagatay Ucgun, Filiz</au><au>Akay, Kadri Ulas</au><au>Kocinac, Ljubisa D. R.</au><au>Cakalli, Huseyin</au><au>Gurtug, Ozay</au><au>Sakalli, Izzet</au><au>Gul, Ilhan</au><au>Akyel, Tugba</au><au>Ashyralyev, Allaberen</au><au>Cavalcanti, Marcelo Moreira</au><au>Turkoglu, Duran</au><au>Sahin, Hakan</au><au>Tez, Mujgan</au><au>Erkoc Yılmazturk, Temha</au><au>Domingos Cavalcanti, Valéria Neves</au><au>Canak, Ibrahim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-12-06</date><risdate>2019</risdate><volume>2183</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the Hille-Yosida condition. The main tool is an appropriate fixed point theorem, integrated semigroup, and the known facts about fractional calculus.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136181</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2019, Vol.2183 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136181
source AIP Journals Complete
subjects Controllability
Fixed points (mathematics)
Fractional calculus
Inclusions
Operators (mathematics)
title Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Controllability%20results%20for%20nondensely%20defined%20impulsive%20fractional-order%20functional%20semilinear%20differential%20inclusions%20in%20abstract%20space&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Boudjerida,%20Assia&rft.date=2019-12-06&rft.volume=2183&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136181&rft_dat=%3Cproquest_scita%3E2322246417%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322246417&rft_id=info:pmid/&rfr_iscdi=true