Controllability results for nondensely defined impulsive fractional-order functional semilinear differential inclusions in abstract space
In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the H...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we prove the controllability result of integral solutions defined on a real compact interval for a class of impulsive functional differential inclusions with fractional order and nonlocal conditions, in the case when the linear part is a non-densely defined operator and satisfies the Hille-Yosida condition. The main tool is an appropriate fixed point theorem, integrated semigroup, and the known facts about fractional calculus. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5136181 |