Do all screw dislocations cause leakage in GaN-based devices?

Screw dislocations are generally considered to be one of the main causes of GaN-based device leakage, but so far, nearly no reports have focused on the effects of open-core screw dislocations on device leakage currents experimentally. In this paper, we use a conductive atomic force microscope to cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-02, Vol.116 (6)
Hauptverfasser: Wang, Jin, You, Haifan, Guo, Hui, Xue, Junjun, Yang, Guofeng, Chen, Dunjun, Liu, Bin, Lu, Hai, Zhang, Rong, Zheng, Youdou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 116
creator Wang, Jin
You, Haifan
Guo, Hui
Xue, Junjun
Yang, Guofeng
Chen, Dunjun
Liu, Bin
Lu, Hai
Zhang, Rong
Zheng, Youdou
description Screw dislocations are generally considered to be one of the main causes of GaN-based device leakage, but so far, nearly no reports have focused on the effects of open-core screw dislocations on device leakage currents experimentally. In this paper, we use a conductive atomic force microscope to characterize the electronic properties of threading dislocations (TDs) in the GaN layer. The full-core screw dislocations and mixed dislocations are found to provide conductive paths for device leakage currents. In terms of the contribution to device leakage currents, the edge and open-core screw dislocations have smaller effects than the full-core screw dislocations and mixed dislocations. We use isotropic linear elasticity theory and density functional theory calculations to model the core atomic structures of TDs and calculate the corresponding electronic structures. The results show that screw dislocations with full-core structures are found to introduce both deep and shallow energy states within the energy gap dispersedly, while the open-core screw dislocations and the most edge dislocations introduce only shallow energy states. The calculated electronic structures of each type of dislocation are systematically compared and correlated with experimental observations. Our findings demonstrate that full-core screw dislocations and mixed dislocations in the GaN layer have a far more detrimental impact on device leakage than edge and open-core screw dislocations.
doi_str_mv 10.1063/1.5135960
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5135960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353778681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1e81b5bef1a7345683666774394c4fbeb62ce03d9de00c30a09487fc7ed383ad3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdPZfOxBRKpWoehFzyGbzMrWtVuTbcV_72pFD4KnYeDhHeZl7BDECITCUxhJQFkoscUGILTOEMBss4EQAjNVSNhleynN-1WOEQfs7LLlrml48pHeeKhT03rX1e0ice9WiXhD7tk9Ea8XfOrustIlCjzQuvaUzvfZTuWaRAffc8ger68eJjfZ7H56O7mYZR4L7DIgA6UsqQKnMZfKoFJK6xyL3OdVSaUaexIYikBCeBROFLnRldcU0KALOGRHm9xlbF9XlDo7b1dx0Z-0Y5SotVEGenW8UT62KUWq7DLWLy6-WxD2sx0L9rud3p5sbPJ19_XwD1638RfaZaj-w3-TPwAINnDy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353778681</pqid></control><display><type>article</type><title>Do all screw dislocations cause leakage in GaN-based devices?</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Jin ; You, Haifan ; Guo, Hui ; Xue, Junjun ; Yang, Guofeng ; Chen, Dunjun ; Liu, Bin ; Lu, Hai ; Zhang, Rong ; Zheng, Youdou</creator><creatorcontrib>Wang, Jin ; You, Haifan ; Guo, Hui ; Xue, Junjun ; Yang, Guofeng ; Chen, Dunjun ; Liu, Bin ; Lu, Hai ; Zhang, Rong ; Zheng, Youdou</creatorcontrib><description>Screw dislocations are generally considered to be one of the main causes of GaN-based device leakage, but so far, nearly no reports have focused on the effects of open-core screw dislocations on device leakage currents experimentally. In this paper, we use a conductive atomic force microscope to characterize the electronic properties of threading dislocations (TDs) in the GaN layer. The full-core screw dislocations and mixed dislocations are found to provide conductive paths for device leakage currents. In terms of the contribution to device leakage currents, the edge and open-core screw dislocations have smaller effects than the full-core screw dislocations and mixed dislocations. We use isotropic linear elasticity theory and density functional theory calculations to model the core atomic structures of TDs and calculate the corresponding electronic structures. The results show that screw dislocations with full-core structures are found to introduce both deep and shallow energy states within the energy gap dispersedly, while the open-core screw dislocations and the most edge dislocations introduce only shallow energy states. The calculated electronic structures of each type of dislocation are systematically compared and correlated with experimental observations. Our findings demonstrate that full-core screw dislocations and mixed dislocations in the GaN layer have a far more detrimental impact on device leakage than edge and open-core screw dislocations.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5135960</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Density functional theory ; Edge dislocations ; Electronic properties ; Energy gap ; Leakage current ; Screw dislocations ; Threading dislocations</subject><ispartof>Applied physics letters, 2020-02, Vol.116 (6)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1e81b5bef1a7345683666774394c4fbeb62ce03d9de00c30a09487fc7ed383ad3</citedby><cites>FETCH-LOGICAL-c393t-1e81b5bef1a7345683666774394c4fbeb62ce03d9de00c30a09487fc7ed383ad3</cites><orcidid>0000-0002-9881-7208 ; 0000-0003-2214-1771 ; 0000-0002-9495-6809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5135960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>You, Haifan</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Xue, Junjun</creatorcontrib><creatorcontrib>Yang, Guofeng</creatorcontrib><creatorcontrib>Chen, Dunjun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Zheng, Youdou</creatorcontrib><title>Do all screw dislocations cause leakage in GaN-based devices?</title><title>Applied physics letters</title><description>Screw dislocations are generally considered to be one of the main causes of GaN-based device leakage, but so far, nearly no reports have focused on the effects of open-core screw dislocations on device leakage currents experimentally. In this paper, we use a conductive atomic force microscope to characterize the electronic properties of threading dislocations (TDs) in the GaN layer. The full-core screw dislocations and mixed dislocations are found to provide conductive paths for device leakage currents. In terms of the contribution to device leakage currents, the edge and open-core screw dislocations have smaller effects than the full-core screw dislocations and mixed dislocations. We use isotropic linear elasticity theory and density functional theory calculations to model the core atomic structures of TDs and calculate the corresponding electronic structures. The results show that screw dislocations with full-core structures are found to introduce both deep and shallow energy states within the energy gap dispersedly, while the open-core screw dislocations and the most edge dislocations introduce only shallow energy states. The calculated electronic structures of each type of dislocation are systematically compared and correlated with experimental observations. Our findings demonstrate that full-core screw dislocations and mixed dislocations in the GaN layer have a far more detrimental impact on device leakage than edge and open-core screw dislocations.</description><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Density functional theory</subject><subject>Edge dislocations</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Leakage current</subject><subject>Screw dislocations</subject><subject>Threading dislocations</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdPZfOxBRKpWoehFzyGbzMrWtVuTbcV_72pFD4KnYeDhHeZl7BDECITCUxhJQFkoscUGILTOEMBss4EQAjNVSNhleynN-1WOEQfs7LLlrml48pHeeKhT03rX1e0ice9WiXhD7tk9Ea8XfOrustIlCjzQuvaUzvfZTuWaRAffc8ger68eJjfZ7H56O7mYZR4L7DIgA6UsqQKnMZfKoFJK6xyL3OdVSaUaexIYikBCeBROFLnRldcU0KALOGRHm9xlbF9XlDo7b1dx0Z-0Y5SotVEGenW8UT62KUWq7DLWLy6-WxD2sx0L9rud3p5sbPJ19_XwD1638RfaZaj-w3-TPwAINnDy</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Wang, Jin</creator><creator>You, Haifan</creator><creator>Guo, Hui</creator><creator>Xue, Junjun</creator><creator>Yang, Guofeng</creator><creator>Chen, Dunjun</creator><creator>Liu, Bin</creator><creator>Lu, Hai</creator><creator>Zhang, Rong</creator><creator>Zheng, Youdou</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9881-7208</orcidid><orcidid>https://orcid.org/0000-0003-2214-1771</orcidid><orcidid>https://orcid.org/0000-0002-9495-6809</orcidid></search><sort><creationdate>20200210</creationdate><title>Do all screw dislocations cause leakage in GaN-based devices?</title><author>Wang, Jin ; You, Haifan ; Guo, Hui ; Xue, Junjun ; Yang, Guofeng ; Chen, Dunjun ; Liu, Bin ; Lu, Hai ; Zhang, Rong ; Zheng, Youdou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1e81b5bef1a7345683666774394c4fbeb62ce03d9de00c30a09487fc7ed383ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Density functional theory</topic><topic>Edge dislocations</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Leakage current</topic><topic>Screw dislocations</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>You, Haifan</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Xue, Junjun</creatorcontrib><creatorcontrib>Yang, Guofeng</creatorcontrib><creatorcontrib>Chen, Dunjun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Zheng, Youdou</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>You, Haifan</au><au>Guo, Hui</au><au>Xue, Junjun</au><au>Yang, Guofeng</au><au>Chen, Dunjun</au><au>Liu, Bin</au><au>Lu, Hai</au><au>Zhang, Rong</au><au>Zheng, Youdou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do all screw dislocations cause leakage in GaN-based devices?</atitle><jtitle>Applied physics letters</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>116</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Screw dislocations are generally considered to be one of the main causes of GaN-based device leakage, but so far, nearly no reports have focused on the effects of open-core screw dislocations on device leakage currents experimentally. In this paper, we use a conductive atomic force microscope to characterize the electronic properties of threading dislocations (TDs) in the GaN layer. The full-core screw dislocations and mixed dislocations are found to provide conductive paths for device leakage currents. In terms of the contribution to device leakage currents, the edge and open-core screw dislocations have smaller effects than the full-core screw dislocations and mixed dislocations. We use isotropic linear elasticity theory and density functional theory calculations to model the core atomic structures of TDs and calculate the corresponding electronic structures. The results show that screw dislocations with full-core structures are found to introduce both deep and shallow energy states within the energy gap dispersedly, while the open-core screw dislocations and the most edge dislocations introduce only shallow energy states. The calculated electronic structures of each type of dislocation are systematically compared and correlated with experimental observations. Our findings demonstrate that full-core screw dislocations and mixed dislocations in the GaN layer have a far more detrimental impact on device leakage than edge and open-core screw dislocations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5135960</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9881-7208</orcidid><orcidid>https://orcid.org/0000-0003-2214-1771</orcidid><orcidid>https://orcid.org/0000-0002-9495-6809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-02, Vol.116 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5135960
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Atomic force microscopes
Atomic force microscopy
Density functional theory
Edge dislocations
Electronic properties
Energy gap
Leakage current
Screw dislocations
Threading dislocations
title Do all screw dislocations cause leakage in GaN-based devices?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20all%20screw%20dislocations%20cause%20leakage%20in%20GaN-based%20devices?&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Jin&rft.date=2020-02-10&rft.volume=116&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5135960&rft_dat=%3Cproquest_scita%3E2353778681%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353778681&rft_id=info:pmid/&rfr_iscdi=true