Numerical techniques of nonlinear regression model estimation

The literature on numerical methods for fitting nonlinear regression model has grown enormously in the fast five decades. An important phase in nonlinear regression problems is the exploration of the relation between the independent and dependent variables. A largely unexplored area of research in n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Donthi, Ranadheer, Praveen, J. Peter, Prasad, S. Vijay, Mahaboob, B., Venkateswarlu, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The literature on numerical methods for fitting nonlinear regression model has grown enormously in the fast five decades. An important phase in nonlinear regression problems is the exploration of the relation between the independent and dependent variables. A largely unexplored area of research in nonlinear regression models concerns the finite sample properties of nonlinear parameters. The main object of this research study is to propose some nonlinear methods of estimation of nonlinear regression models, namely Newton-Raphson method, Gauss-Newton method, Method of scoring, Quadratic Hill-Climbing and Conjugate Gradient methods. In 2005, G.E. Hovland et al (see [5]). In his research article, presented a parameter estimation of physical time-varying parameters for combined-cycle power plant models. B. Mahaboob et al. (see [6]), in their research paper, proposed some computational methods based on numerical analysis to estimate the parameters of nonlinear regression model. S.J. Juliear et al. (see [7]), in their research paper, developed the method of unscented transformation (UT) to propagate mean and covariance information through nonlinear transformations.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5135257