Heat transfer enhancement by a focused ultrasound field

A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-08, Vol.10 (8), p.085211-085211-11
Hauptverfasser: Wang, Xiaowu, Wan, Zhenping, Chen, Boqian, Zhao, Yongling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085211-11
container_issue 8
container_start_page 085211
container_title AIP advances
container_volume 10
creator Wang, Xiaowu
Wan, Zhenping
Chen, Boqian
Zhao, Yongling
description A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.
doi_str_mv 10.1063/1.5133083
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5133083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a9697c7fda640feaf3a9f8888b1b080</doaj_id><sourcerecordid>2430794613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWGoPfoMFTwpb82-zyVGK2kLBi57DbDbRLe2mJlmh397oFvXsu8ww8-PN8BC6JHhOsGC3ZF4RxrBkJ2hCSSVLRqk4_dOfo1mMG5zFFcGST1C9tJCKFKCPzobC9m_QG7uzfSqaQwGF82aIti2GbWaiH_q2cJ3dthfozME22tmxTtHLw_3zYlmunx5Xi7t1aTiVqQTrqCG1k6ziFiiAZAKEcbzBFbOEUaNYy43MS1UDrpQxCpjBsraCENWwKVqNvq2Hjd6HbgfhoD10-nvgw6uGkDqztZqAEqo2tWtBcOwsOAbKyayGNFji7HU1eu2Dfx9sTHrjh9Dn9zXlDNeKixzfFF2PlAk-xmDdz1WC9VfMmuhjzJm9GdlougSp8_3_4A8ffkG9bx37BE6tiXY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430794613</pqid></control><display><type>article</type><title>Heat transfer enhancement by a focused ultrasound field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</creator><creatorcontrib>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</creatorcontrib><description>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5133083</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic streaming ; Cavitation ; Cross-sections ; Free convection ; Heat transfer ; Heat transfer coefficients ; High temperature ; Microjets ; Pressure effects ; Sound intensity ; Sound sources ; Standing waves ; Ultrasonic imaging ; Ultrasound</subject><ispartof>AIP advances, 2020-08, Vol.10 (8), p.085211-085211-11</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</citedby><cites>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</cites><orcidid>0000-0002-1604-4556 ; 0000-0003-3492-0844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><title>Heat transfer enhancement by a focused ultrasound field</title><title>AIP advances</title><description>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</description><subject>Acoustic streaming</subject><subject>Cavitation</subject><subject>Cross-sections</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High temperature</subject><subject>Microjets</subject><subject>Pressure effects</subject><subject>Sound intensity</subject><subject>Sound sources</subject><subject>Standing waves</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkE9LAzEQxYMoWGoPfoMFTwpb82-zyVGK2kLBi57DbDbRLe2mJlmh397oFvXsu8ww8-PN8BC6JHhOsGC3ZF4RxrBkJ2hCSSVLRqk4_dOfo1mMG5zFFcGST1C9tJCKFKCPzobC9m_QG7uzfSqaQwGF82aIti2GbWaiH_q2cJ3dthfozME22tmxTtHLw_3zYlmunx5Xi7t1aTiVqQTrqCG1k6ziFiiAZAKEcbzBFbOEUaNYy43MS1UDrpQxCpjBsraCENWwKVqNvq2Hjd6HbgfhoD10-nvgw6uGkDqztZqAEqo2tWtBcOwsOAbKyayGNFji7HU1eu2Dfx9sTHrjh9Dn9zXlDNeKixzfFF2PlAk-xmDdz1WC9VfMmuhjzJm9GdlougSp8_3_4A8ffkG9bx37BE6tiXY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Xiaowu</creator><creator>Wan, Zhenping</creator><creator>Chen, Boqian</creator><creator>Zhao, Yongling</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1604-4556</orcidid><orcidid>https://orcid.org/0000-0003-3492-0844</orcidid></search><sort><creationdate>20200801</creationdate><title>Heat transfer enhancement by a focused ultrasound field</title><author>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic streaming</topic><topic>Cavitation</topic><topic>Cross-sections</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High temperature</topic><topic>Microjets</topic><topic>Pressure effects</topic><topic>Sound intensity</topic><topic>Sound sources</topic><topic>Standing waves</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaowu</au><au>Wan, Zhenping</au><au>Chen, Boqian</au><au>Zhao, Yongling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer enhancement by a focused ultrasound field</atitle><jtitle>AIP advances</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>085211</spage><epage>085211-11</epage><pages>085211-085211-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133083</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1604-4556</orcidid><orcidid>https://orcid.org/0000-0003-3492-0844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2020-08, Vol.10 (8), p.085211-085211-11
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_5133083
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acoustic streaming
Cavitation
Cross-sections
Free convection
Heat transfer
Heat transfer coefficients
High temperature
Microjets
Pressure effects
Sound intensity
Sound sources
Standing waves
Ultrasonic imaging
Ultrasound
title Heat transfer enhancement by a focused ultrasound field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20enhancement%20by%20a%20focused%20ultrasound%20field&rft.jtitle=AIP%20advances&rft.au=Wang,%20Xiaowu&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=085211&rft.epage=085211-11&rft.pages=085211-085211-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5133083&rft_dat=%3Cproquest_scita%3E2430794613%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430794613&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1a9697c7fda640feaf3a9f8888b1b080&rfr_iscdi=true