Heat transfer enhancement by a focused ultrasound field
A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer...
Gespeichert in:
Veröffentlicht in: | AIP advances 2020-08, Vol.10 (8), p.085211-085211-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085211-11 |
---|---|
container_issue | 8 |
container_start_page | 085211 |
container_title | AIP advances |
container_volume | 10 |
creator | Wang, Xiaowu Wan, Zhenping Chen, Boqian Zhao, Yongling |
description | A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer. |
doi_str_mv | 10.1063/1.5133083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5133083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a9697c7fda640feaf3a9f8888b1b080</doaj_id><sourcerecordid>2430794613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWGoPfoMFTwpb82-zyVGK2kLBi57DbDbRLe2mJlmh397oFvXsu8ww8-PN8BC6JHhOsGC3ZF4RxrBkJ2hCSSVLRqk4_dOfo1mMG5zFFcGST1C9tJCKFKCPzobC9m_QG7uzfSqaQwGF82aIti2GbWaiH_q2cJ3dthfozME22tmxTtHLw_3zYlmunx5Xi7t1aTiVqQTrqCG1k6ziFiiAZAKEcbzBFbOEUaNYy43MS1UDrpQxCpjBsraCENWwKVqNvq2Hjd6HbgfhoD10-nvgw6uGkDqztZqAEqo2tWtBcOwsOAbKyayGNFji7HU1eu2Dfx9sTHrjh9Dn9zXlDNeKixzfFF2PlAk-xmDdz1WC9VfMmuhjzJm9GdlougSp8_3_4A8ffkG9bx37BE6tiXY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430794613</pqid></control><display><type>article</type><title>Heat transfer enhancement by a focused ultrasound field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</creator><creatorcontrib>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</creatorcontrib><description>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5133083</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic streaming ; Cavitation ; Cross-sections ; Free convection ; Heat transfer ; Heat transfer coefficients ; High temperature ; Microjets ; Pressure effects ; Sound intensity ; Sound sources ; Standing waves ; Ultrasonic imaging ; Ultrasound</subject><ispartof>AIP advances, 2020-08, Vol.10 (8), p.085211-085211-11</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</citedby><cites>FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</cites><orcidid>0000-0002-1604-4556 ; 0000-0003-3492-0844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><title>Heat transfer enhancement by a focused ultrasound field</title><title>AIP advances</title><description>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</description><subject>Acoustic streaming</subject><subject>Cavitation</subject><subject>Cross-sections</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High temperature</subject><subject>Microjets</subject><subject>Pressure effects</subject><subject>Sound intensity</subject><subject>Sound sources</subject><subject>Standing waves</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkE9LAzEQxYMoWGoPfoMFTwpb82-zyVGK2kLBi57DbDbRLe2mJlmh397oFvXsu8ww8-PN8BC6JHhOsGC3ZF4RxrBkJ2hCSSVLRqk4_dOfo1mMG5zFFcGST1C9tJCKFKCPzobC9m_QG7uzfSqaQwGF82aIti2GbWaiH_q2cJ3dthfozME22tmxTtHLw_3zYlmunx5Xi7t1aTiVqQTrqCG1k6ziFiiAZAKEcbzBFbOEUaNYy43MS1UDrpQxCpjBsraCENWwKVqNvq2Hjd6HbgfhoD10-nvgw6uGkDqztZqAEqo2tWtBcOwsOAbKyayGNFji7HU1eu2Dfx9sTHrjh9Dn9zXlDNeKixzfFF2PlAk-xmDdz1WC9VfMmuhjzJm9GdlougSp8_3_4A8ffkG9bx37BE6tiXY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Xiaowu</creator><creator>Wan, Zhenping</creator><creator>Chen, Boqian</creator><creator>Zhao, Yongling</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1604-4556</orcidid><orcidid>https://orcid.org/0000-0003-3492-0844</orcidid></search><sort><creationdate>20200801</creationdate><title>Heat transfer enhancement by a focused ultrasound field</title><author>Wang, Xiaowu ; Wan, Zhenping ; Chen, Boqian ; Zhao, Yongling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-aef2c17f8354ea2aa836a6cf4b053e132c93d4c84ea97a059cc9a3c087e6119b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic streaming</topic><topic>Cavitation</topic><topic>Cross-sections</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High temperature</topic><topic>Microjets</topic><topic>Pressure effects</topic><topic>Sound intensity</topic><topic>Sound sources</topic><topic>Standing waves</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaowu</au><au>Wan, Zhenping</au><au>Chen, Boqian</au><au>Zhao, Yongling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer enhancement by a focused ultrasound field</atitle><jtitle>AIP advances</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>085211</spage><epage>085211-11</epage><pages>085211-085211-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>A focused ultrasound field is set up in a heat transfer cavity with an elliptical cross section. A sound source and a heat source are designed at the two focus points where the sound intensity is reinforced based on the interference and standing wave criteria. The sound intensities and heat transfer coefficients of the cavity with a focused ultrasonic field and an ordinary cavity with a rectangular cross section are measured under the natural convection heat transfer regime. The distribution of the heat transfer coefficient matches the distribution of the sound intensity. The heat transfer performance is then enhanced in the cavity with a focused ultrasonic field. The cavitations and acoustic streaming characteristics in the cavity with a focused ultrasonic field and the ordinary cavity are also studied. The velocity of acoustic streaming is larger in the cavity with a focused ultrasonic field than in the ordinary cavity, and no cavitation is observed in the ordinary cavity. Although the cavitation cloud around the heat source is unfavorable for the heat transfer in the cavity with a focused ultrasonic field, the cavitations collapse and the resulting high temperature, higher pressure, and microjet effects still contribute substantially to heat transfer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133083</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1604-4556</orcidid><orcidid>https://orcid.org/0000-0003-3492-0844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2020-08, Vol.10 (8), p.085211-085211-11 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5133083 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acoustic streaming Cavitation Cross-sections Free convection Heat transfer Heat transfer coefficients High temperature Microjets Pressure effects Sound intensity Sound sources Standing waves Ultrasonic imaging Ultrasound |
title | Heat transfer enhancement by a focused ultrasound field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20enhancement%20by%20a%20focused%20ultrasound%20field&rft.jtitle=AIP%20advances&rft.au=Wang,%20Xiaowu&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=085211&rft.epage=085211-11&rft.pages=085211-085211-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5133083&rft_dat=%3Cproquest_scita%3E2430794613%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430794613&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1a9697c7fda640feaf3a9f8888b1b080&rfr_iscdi=true |