Improved stability for 2D attractive Bose gases

We study the ground-state energy of N attractive bosons in the plane. The interaction is scaled for the gas to be dilute so that the corresponding mean-field problem is a local non-linear Schrödinger (NLS) equation. We improve the conditions under which one can prove that the many-body problem is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-02, Vol.61 (2)
Hauptverfasser: Nam, Phan Thành, Rougerie, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of mathematical physics
container_volume 61
creator Nam, Phan Thành
Rougerie, Nicolas
description We study the ground-state energy of N attractive bosons in the plane. The interaction is scaled for the gas to be dilute so that the corresponding mean-field problem is a local non-linear Schrödinger (NLS) equation. We improve the conditions under which one can prove that the many-body problem is stable (of the second kind). This implies, using previous results, that the many-body ground states and dynamics converge to the NLS ones for an extended range of diluteness parameters.
doi_str_mv 10.1063/1.5131320
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5131320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364605249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e1af6cf28d7ca0a87b63a58e96dfd7a0501398f944d2882458969067d7fb9b2d3</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKsL32DAlcK0-Zv8LGurtlBwo-uQmSSa0jY1SQf69k5paReCqw8-Dod7LwD3CA4QZGSIBhUiiGB4AXoICllyVolL0IMQ4xJTIa7BTUoLCBESlPbAcLbaxNBaU6Ssa7_0eVe4EAs8KXTOUTfZt7Z4DskWXzrZdAuunF4me3e8ffD5-vIxnpbz97fZeDQvGyJZLi3SjjUOC8MbDbXgNSO6ElYy4wzXsIKISOEkpQYLgWklJJOQccNdLWtsSB88Hrzfeqk20a903KmgvZqO5mr_6_pIxDhuccc-HNiuyc_WpqwWYRvXXTyFCaMMVpjKs7GJIaVo3UmLoNpvp5A6btexTwc2NT7r7MP6BLchnkG1Me4_-K_5F0CVeaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364605249</pqid></control><display><type>article</type><title>Improved stability for 2D attractive Bose gases</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nam, Phan Thành ; Rougerie, Nicolas</creator><creatorcontrib>Nam, Phan Thành ; Rougerie, Nicolas</creatorcontrib><description>We study the ground-state energy of N attractive bosons in the plane. The interaction is scaled for the gas to be dilute so that the corresponding mean-field problem is a local non-linear Schrödinger (NLS) equation. We improve the conditions under which one can prove that the many-body problem is stable (of the second kind). This implies, using previous results, that the many-body ground states and dynamics converge to the NLS ones for an extended range of diluteness parameters.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5131320</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Analysis of PDEs ; Bosons ; Dilution ; Mathematical Physics ; Mathematics ; Physics</subject><ispartof>Journal of mathematical physics, 2020-02, Vol.61 (2)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e1af6cf28d7ca0a87b63a58e96dfd7a0501398f944d2882458969067d7fb9b2d3</citedby><cites>FETCH-LOGICAL-c396t-e1af6cf28d7ca0a87b63a58e96dfd7a0501398f944d2882458969067d7fb9b2d3</cites><orcidid>0000-0001-7599-9742 ; 0000-0002-1359-5766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5131320$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02291672$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Phan Thành</creatorcontrib><creatorcontrib>Rougerie, Nicolas</creatorcontrib><title>Improved stability for 2D attractive Bose gases</title><title>Journal of mathematical physics</title><description>We study the ground-state energy of N attractive bosons in the plane. The interaction is scaled for the gas to be dilute so that the corresponding mean-field problem is a local non-linear Schrödinger (NLS) equation. We improve the conditions under which one can prove that the many-body problem is stable (of the second kind). This implies, using previous results, that the many-body ground states and dynamics converge to the NLS ones for an extended range of diluteness parameters.</description><subject>Analysis of PDEs</subject><subject>Bosons</subject><subject>Dilution</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKsL32DAlcK0-Zv8LGurtlBwo-uQmSSa0jY1SQf69k5paReCqw8-Dod7LwD3CA4QZGSIBhUiiGB4AXoICllyVolL0IMQ4xJTIa7BTUoLCBESlPbAcLbaxNBaU6Ssa7_0eVe4EAs8KXTOUTfZt7Z4DskWXzrZdAuunF4me3e8ffD5-vIxnpbz97fZeDQvGyJZLi3SjjUOC8MbDbXgNSO6ElYy4wzXsIKISOEkpQYLgWklJJOQccNdLWtsSB88Hrzfeqk20a903KmgvZqO5mr_6_pIxDhuccc-HNiuyc_WpqwWYRvXXTyFCaMMVpjKs7GJIaVo3UmLoNpvp5A6btexTwc2NT7r7MP6BLchnkG1Me4_-K_5F0CVeaA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nam, Phan Thành</creator><creator>Rougerie, Nicolas</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7599-9742</orcidid><orcidid>https://orcid.org/0000-0002-1359-5766</orcidid></search><sort><creationdate>20200201</creationdate><title>Improved stability for 2D attractive Bose gases</title><author>Nam, Phan Thành ; Rougerie, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e1af6cf28d7ca0a87b63a58e96dfd7a0501398f944d2882458969067d7fb9b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis of PDEs</topic><topic>Bosons</topic><topic>Dilution</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Phan Thành</creatorcontrib><creatorcontrib>Rougerie, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Phan Thành</au><au>Rougerie, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved stability for 2D attractive Bose gases</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>61</volume><issue>2</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study the ground-state energy of N attractive bosons in the plane. The interaction is scaled for the gas to be dilute so that the corresponding mean-field problem is a local non-linear Schrödinger (NLS) equation. We improve the conditions under which one can prove that the many-body problem is stable (of the second kind). This implies, using previous results, that the many-body ground states and dynamics converge to the NLS ones for an extended range of diluteness parameters.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5131320</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7599-9742</orcidid><orcidid>https://orcid.org/0000-0002-1359-5766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2020-02, Vol.61 (2)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_5131320
source AIP Journals Complete; Alma/SFX Local Collection
subjects Analysis of PDEs
Bosons
Dilution
Mathematical Physics
Mathematics
Physics
title Improved stability for 2D attractive Bose gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20stability%20for%202D%20attractive%20Bose%20gases&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nam,%20Phan%20Th%C3%A0nh&rft.date=2020-02-01&rft.volume=61&rft.issue=2&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5131320&rft_dat=%3Cproquest_scita%3E2364605249%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364605249&rft_id=info:pmid/&rfr_iscdi=true