Computing vibrational eigenstates with tree tensor network states (TTNS)

We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-11, Vol.151 (20), p.204102-204102
1. Verfasser: Larsson, Henrik R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204102
container_issue 20
container_start_page 204102
container_title The Journal of chemical physics
container_volume 151
creator Larsson, Henrik R.
description We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group (DMRG). We apply this to compute the vibrational spectrum of acetonitrile (CH3CN) to high accuracy and compare TTNSs with matrix product states (MPSs), the ansatz behind the DMRG. The presented optimization scheme converges much faster than ML-MCTDH-based optimization. For this particular system, we found no major advantage of the more general TTNS over MPS. We highlight that for both TTNS and MPS, the usage of an adaptive bond dimension significantly reduces the amount of required parameters. We furthermore propose a procedure to find good trees.
doi_str_mv 10.1063/1.5130390
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5130390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320377342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-758a0bc75540d8ca270a1116474d70d916b4d9f2faa65f305a93c2f6bb48f6963</originalsourceid><addsrcrecordid>eNqd0EFLwzAUB_AgCs7pwW9Q8LIJnS9JmzRHGeoE0YPzHNI2mZldM5N0w29v5waCR08P3vvxh_dH6BLDBAOjN3iSYwpUwBEaYChEypmAYzQAIDgVDNgpOgthCQCYk2yAZlO3WnfRtotkY0uvonWtahJtF7oNUUUdkq2N70n0Wiex3zmftDpunf9IDvfRfP78Oj5HJ0Y1QV8c5hC93d_Np7P06eXhcXr7lFZU5DHleaGgrHieZ1AXlSIcFMaYZTyrOdQCszKrhSFGKZYbCrkStCKGlWVWGCYYHaLRPnft3WenQ5QrGyrdNKrVrguSUAKUc5qRnl79oUvX-f69ncK9EULQXo33qvIuBK-NXHu7Uv5LYpC7TiWWh057e723obLxp6v_4Y3zv1Cua0O_ARBRg1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317739993</pqid></control><display><type>article</type><title>Computing vibrational eigenstates with tree tensor network states (TTNS)</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Larsson, Henrik R.</creator><creatorcontrib>Larsson, Henrik R.</creatorcontrib><description>We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group (DMRG). We apply this to compute the vibrational spectrum of acetonitrile (CH3CN) to high accuracy and compare TTNSs with matrix product states (MPSs), the ansatz behind the DMRG. The presented optimization scheme converges much faster than ML-MCTDH-based optimization. For this particular system, we found no major advantage of the more general TTNS over MPS. We highlight that for both TTNS and MPS, the usage of an adaptive bond dimension significantly reduces the amount of required parameters. We furthermore propose a procedure to find good trees.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5130390</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acetonitrile ; Algorithms ; Eigenvectors ; Mathematical analysis ; Multilayers ; Optimization ; Tensors ; Time dependence</subject><ispartof>The Journal of chemical physics, 2019-11, Vol.151 (20), p.204102-204102</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-758a0bc75540d8ca270a1116474d70d916b4d9f2faa65f305a93c2f6bb48f6963</citedby><cites>FETCH-LOGICAL-c395t-758a0bc75540d8ca270a1116474d70d916b4d9f2faa65f305a93c2f6bb48f6963</cites><orcidid>0000-0002-9417-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5130390$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Larsson, Henrik R.</creatorcontrib><title>Computing vibrational eigenstates with tree tensor network states (TTNS)</title><title>The Journal of chemical physics</title><description>We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group (DMRG). We apply this to compute the vibrational spectrum of acetonitrile (CH3CN) to high accuracy and compare TTNSs with matrix product states (MPSs), the ansatz behind the DMRG. The presented optimization scheme converges much faster than ML-MCTDH-based optimization. For this particular system, we found no major advantage of the more general TTNS over MPS. We highlight that for both TTNS and MPS, the usage of an adaptive bond dimension significantly reduces the amount of required parameters. We furthermore propose a procedure to find good trees.</description><subject>Acetonitrile</subject><subject>Algorithms</subject><subject>Eigenvectors</subject><subject>Mathematical analysis</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Tensors</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0EFLwzAUB_AgCs7pwW9Q8LIJnS9JmzRHGeoE0YPzHNI2mZldM5N0w29v5waCR08P3vvxh_dH6BLDBAOjN3iSYwpUwBEaYChEypmAYzQAIDgVDNgpOgthCQCYk2yAZlO3WnfRtotkY0uvonWtahJtF7oNUUUdkq2N70n0Wiex3zmftDpunf9IDvfRfP78Oj5HJ0Y1QV8c5hC93d_Np7P06eXhcXr7lFZU5DHleaGgrHieZ1AXlSIcFMaYZTyrOdQCszKrhSFGKZYbCrkStCKGlWVWGCYYHaLRPnft3WenQ5QrGyrdNKrVrguSUAKUc5qRnl79oUvX-f69ncK9EULQXo33qvIuBK-NXHu7Uv5LYpC7TiWWh057e723obLxp6v_4Y3zv1Cua0O_ARBRg1Y</recordid><startdate>20191128</startdate><enddate>20191128</enddate><creator>Larsson, Henrik R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9417-1518</orcidid></search><sort><creationdate>20191128</creationdate><title>Computing vibrational eigenstates with tree tensor network states (TTNS)</title><author>Larsson, Henrik R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-758a0bc75540d8ca270a1116474d70d916b4d9f2faa65f305a93c2f6bb48f6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetonitrile</topic><topic>Algorithms</topic><topic>Eigenvectors</topic><topic>Mathematical analysis</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Tensors</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsson, Henrik R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsson, Henrik R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing vibrational eigenstates with tree tensor network states (TTNS)</atitle><jtitle>The Journal of chemical physics</jtitle><date>2019-11-28</date><risdate>2019</risdate><volume>151</volume><issue>20</issue><spage>204102</spage><epage>204102</epage><pages>204102-204102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group (DMRG). We apply this to compute the vibrational spectrum of acetonitrile (CH3CN) to high accuracy and compare TTNSs with matrix product states (MPSs), the ansatz behind the DMRG. The presented optimization scheme converges much faster than ML-MCTDH-based optimization. For this particular system, we found no major advantage of the more general TTNS over MPS. We highlight that for both TTNS and MPS, the usage of an adaptive bond dimension significantly reduces the amount of required parameters. We furthermore propose a procedure to find good trees.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5130390</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9417-1518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-11, Vol.151 (20), p.204102-204102
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5130390
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Acetonitrile
Algorithms
Eigenvectors
Mathematical analysis
Multilayers
Optimization
Tensors
Time dependence
title Computing vibrational eigenstates with tree tensor network states (TTNS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20vibrational%20eigenstates%20with%20tree%20tensor%20network%20states%20(TTNS)&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Larsson,%20Henrik%20R.&rft.date=2019-11-28&rft.volume=151&rft.issue=20&rft.spage=204102&rft.epage=204102&rft.pages=204102-204102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5130390&rft_dat=%3Cproquest_scita%3E2320377342%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317739993&rft_id=info:pmid/&rfr_iscdi=true