The u-series: A separable decomposition for electrostatics computation with improved accuracy

The evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-02, Vol.152 (8), p.084113-084113
Hauptverfasser: Predescu, Cristian, Lerer, Adam K., Lippert, Ross A., Towles, Brian, Grossman, J.P., Dirks, Robert M., Shaw, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084113
container_issue 8
container_start_page 084113
container_title The Journal of chemical physics
container_volume 152
creator Predescu, Cristian
Lerer, Adam K.
Lippert, Ross A.
Towles, Brian
Grossman, J.P.
Dirks, Robert M.
Shaw, David E.
description The evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potential into a near part, typically evaluated by direct summation up to a cutoff radius, and a far part, typically evaluated in Fourier space. In practice, all decomposition approaches involve approximations—such as cutting off the near-part direct sum—but it may be possible to find new decompositions with improved trade-offs between accuracy and performance. Here, we present the u-series, a new decomposition of the Coulomb potential that is more accurate than the standard (Ewald) decomposition for a given amount of computational effort and achieves the same accuracy as the Ewald decomposition with approximately half the computational effort. These improvements, which we demonstrate numerically using a lipid membrane system, arise because the u-series is smooth on the entire real axis and exact up to the cutoff radius. Additional performance improvements over the Ewald decomposition may be possible in certain situations because the far part of the u-series is a sum of Gaussians and can thus be evaluated using algorithms that require a separable convolution kernel; we describe one such algorithm that reduces communication latency at the expense of communication bandwidth and computation, a trade-off that may be advantageous on modern massively parallel supercomputers.
doi_str_mv 10.1063/1.5129393
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5129393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365817757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7b4eb00864b806c2b01fd41679fbac5c7605aa4ab175f9b0c34cac2e1abea4c83</originalsourceid><addsrcrecordid>eNp90F9r1jAUBvAginudXvgFJOCNCp3nNG3S7G4M_8HAm3kpJTk9ZRntm5q0k317W97XCQpeJXB-PCd5hHiJcIag1Xs8q7G0yqpHYofQ2MJoC4_FDqDEwmrQJ-JZzrcAgKasnooTVSIqVZc78f36huVSZE6B87m8kJknl5wfWHZMcZxiDnOIe9nHJHlgmlPMs5sDZbmNl-2-jn-G-UaGcUrxjjvpiJbk6P65eNK7IfOL43kqvn38cH35ubj6-unL5cVVQRU2c2F8xR6g0ZVvQFPpAfuuQm1s7x3VZDTUzlXOo6l764FURY5KRufZVdSoU_HmkLvu_7FwntsxZOJhcHuOS25LpW1jtLJmpa__ordxSfv1dZuqGzSm3tTbg6L1uzlx304pjC7dtwjt1nmL7bHz1b46Ji5-5O5B_i55Be8OIFM41PVg7mL6k9ROXf8__O_qXz1QmJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365817757</pqid></control><display><type>article</type><title>The u-series: A separable decomposition for electrostatics computation with improved accuracy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Predescu, Cristian ; Lerer, Adam K. ; Lippert, Ross A. ; Towles, Brian ; Grossman, J.P. ; Dirks, Robert M. ; Shaw, David E.</creator><creatorcontrib>Predescu, Cristian ; Lerer, Adam K. ; Lippert, Ross A. ; Towles, Brian ; Grossman, J.P. ; Dirks, Robert M. ; Shaw, David E.</creatorcontrib><description>The evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potential into a near part, typically evaluated by direct summation up to a cutoff radius, and a far part, typically evaluated in Fourier space. In practice, all decomposition approaches involve approximations—such as cutting off the near-part direct sum—but it may be possible to find new decompositions with improved trade-offs between accuracy and performance. Here, we present the u-series, a new decomposition of the Coulomb potential that is more accurate than the standard (Ewald) decomposition for a given amount of computational effort and achieves the same accuracy as the Ewald decomposition with approximately half the computational effort. These improvements, which we demonstrate numerically using a lipid membrane system, arise because the u-series is smooth on the entire real axis and exact up to the cutoff radius. Additional performance improvements over the Ewald decomposition may be possible in certain situations because the far part of the u-series is a sum of Gaussians and can thus be evaluated using algorithms that require a separable convolution kernel; we describe one such algorithm that reduces communication latency at the expense of communication bandwidth and computation, a trade-off that may be advantageous on modern massively parallel supercomputers.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5129393</identifier><identifier>PMID: 32113352</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; Algorithms ; Computation ; Computer simulation ; Convolution ; Coulomb potential ; Decomposition ; Electrostatics ; Lipids ; Molecular dynamics ; Supercomputers ; Tradeoffs</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (8), p.084113-084113</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7b4eb00864b806c2b01fd41679fbac5c7605aa4ab175f9b0c34cac2e1abea4c83</citedby><cites>FETCH-LOGICAL-c418t-7b4eb00864b806c2b01fd41679fbac5c7605aa4ab175f9b0c34cac2e1abea4c83</cites><orcidid>0000-0001-8265-5761 ; 0000000182655761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5129393$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32113352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Predescu, Cristian</creatorcontrib><creatorcontrib>Lerer, Adam K.</creatorcontrib><creatorcontrib>Lippert, Ross A.</creatorcontrib><creatorcontrib>Towles, Brian</creatorcontrib><creatorcontrib>Grossman, J.P.</creatorcontrib><creatorcontrib>Dirks, Robert M.</creatorcontrib><creatorcontrib>Shaw, David E.</creatorcontrib><title>The u-series: A separable decomposition for electrostatics computation with improved accuracy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potential into a near part, typically evaluated by direct summation up to a cutoff radius, and a far part, typically evaluated in Fourier space. In practice, all decomposition approaches involve approximations—such as cutting off the near-part direct sum—but it may be possible to find new decompositions with improved trade-offs between accuracy and performance. Here, we present the u-series, a new decomposition of the Coulomb potential that is more accurate than the standard (Ewald) decomposition for a given amount of computational effort and achieves the same accuracy as the Ewald decomposition with approximately half the computational effort. These improvements, which we demonstrate numerically using a lipid membrane system, arise because the u-series is smooth on the entire real axis and exact up to the cutoff radius. Additional performance improvements over the Ewald decomposition may be possible in certain situations because the far part of the u-series is a sum of Gaussians and can thus be evaluated using algorithms that require a separable convolution kernel; we describe one such algorithm that reduces communication latency at the expense of communication bandwidth and computation, a trade-off that may be advantageous on modern massively parallel supercomputers.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Coulomb potential</subject><subject>Decomposition</subject><subject>Electrostatics</subject><subject>Lipids</subject><subject>Molecular dynamics</subject><subject>Supercomputers</subject><subject>Tradeoffs</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F9r1jAUBvAginudXvgFJOCNCp3nNG3S7G4M_8HAm3kpJTk9ZRntm5q0k317W97XCQpeJXB-PCd5hHiJcIag1Xs8q7G0yqpHYofQ2MJoC4_FDqDEwmrQJ-JZzrcAgKasnooTVSIqVZc78f36huVSZE6B87m8kJknl5wfWHZMcZxiDnOIe9nHJHlgmlPMs5sDZbmNl-2-jn-G-UaGcUrxjjvpiJbk6P65eNK7IfOL43kqvn38cH35ubj6-unL5cVVQRU2c2F8xR6g0ZVvQFPpAfuuQm1s7x3VZDTUzlXOo6l764FURY5KRufZVdSoU_HmkLvu_7FwntsxZOJhcHuOS25LpW1jtLJmpa__ordxSfv1dZuqGzSm3tTbg6L1uzlx304pjC7dtwjt1nmL7bHz1b46Ji5-5O5B_i55Be8OIFM41PVg7mL6k9ROXf8__O_qXz1QmJo</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Predescu, Cristian</creator><creator>Lerer, Adam K.</creator><creator>Lippert, Ross A.</creator><creator>Towles, Brian</creator><creator>Grossman, J.P.</creator><creator>Dirks, Robert M.</creator><creator>Shaw, David E.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8265-5761</orcidid><orcidid>https://orcid.org/0000000182655761</orcidid></search><sort><creationdate>20200228</creationdate><title>The u-series: A separable decomposition for electrostatics computation with improved accuracy</title><author>Predescu, Cristian ; Lerer, Adam K. ; Lippert, Ross A. ; Towles, Brian ; Grossman, J.P. ; Dirks, Robert M. ; Shaw, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7b4eb00864b806c2b01fd41679fbac5c7605aa4ab175f9b0c34cac2e1abea4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Coulomb potential</topic><topic>Decomposition</topic><topic>Electrostatics</topic><topic>Lipids</topic><topic>Molecular dynamics</topic><topic>Supercomputers</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Predescu, Cristian</creatorcontrib><creatorcontrib>Lerer, Adam K.</creatorcontrib><creatorcontrib>Lippert, Ross A.</creatorcontrib><creatorcontrib>Towles, Brian</creatorcontrib><creatorcontrib>Grossman, J.P.</creatorcontrib><creatorcontrib>Dirks, Robert M.</creatorcontrib><creatorcontrib>Shaw, David E.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Predescu, Cristian</au><au>Lerer, Adam K.</au><au>Lippert, Ross A.</au><au>Towles, Brian</au><au>Grossman, J.P.</au><au>Dirks, Robert M.</au><au>Shaw, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The u-series: A separable decomposition for electrostatics computation with improved accuracy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>152</volume><issue>8</issue><spage>084113</spage><epage>084113</epage><pages>084113-084113</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potential into a near part, typically evaluated by direct summation up to a cutoff radius, and a far part, typically evaluated in Fourier space. In practice, all decomposition approaches involve approximations—such as cutting off the near-part direct sum—but it may be possible to find new decompositions with improved trade-offs between accuracy and performance. Here, we present the u-series, a new decomposition of the Coulomb potential that is more accurate than the standard (Ewald) decomposition for a given amount of computational effort and achieves the same accuracy as the Ewald decomposition with approximately half the computational effort. These improvements, which we demonstrate numerically using a lipid membrane system, arise because the u-series is smooth on the entire real axis and exact up to the cutoff radius. Additional performance improvements over the Ewald decomposition may be possible in certain situations because the far part of the u-series is a sum of Gaussians and can thus be evaluated using algorithms that require a separable convolution kernel; we describe one such algorithm that reduces communication latency at the expense of communication bandwidth and computation, a trade-off that may be advantageous on modern massively parallel supercomputers.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32113352</pmid><doi>10.1063/1.5129393</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8265-5761</orcidid><orcidid>https://orcid.org/0000000182655761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-02, Vol.152 (8), p.084113-084113
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5129393
source AIP Journals Complete; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Computation
Computer simulation
Convolution
Coulomb potential
Decomposition
Electrostatics
Lipids
Molecular dynamics
Supercomputers
Tradeoffs
title The u-series: A separable decomposition for electrostatics computation with improved accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20u-series:%20A%20separable%20decomposition%20for%20electrostatics%20computation%20with%20improved%20accuracy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Predescu,%20Cristian&rft.date=2020-02-28&rft.volume=152&rft.issue=8&rft.spage=084113&rft.epage=084113&rft.pages=084113-084113&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5129393&rft_dat=%3Cproquest_scita%3E2365817757%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365817757&rft_id=info:pmid/32113352&rfr_iscdi=true