Computational study on the performance of personalized ventilation assisted with a conventional air conditioning system applied to an office room environment
In the total energy consumption of the building, nearly 40% of energy is consumed by heating, ventilation and air conditioning (HVAC) system. Along with energy saving, it becomes a difficult task to maintain the acceptable thermal comfort and good indoor air quality by using conventional system alon...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the total energy consumption of the building, nearly 40% of energy is consumed by heating, ventilation and air conditioning (HVAC) system. Along with energy saving, it becomes a difficult task to maintain the acceptable thermal comfort and good indoor air quality by using conventional system alone. Present study aims to overcome these problems by integrating personalized ventilation with mixing ventilation system in an office room environment. Typical office cabin is considered and analyses are carried out in ANSYS-FLUENT to evaluate the performance of personalized ventilation system assisted with mixing ventilation system. A 3D computational model is developed and the velocity and temperature distribution around the occupant is obtained. For this analysis, the mixing ventilation and personalized ventilation supply temperatures are maintained at 18°C and 22°C while the corresponding flow rates are 60 l/s and 4 l/s respectively. The simulation results show that the vertical temperature profile and PMV-PPD indices based on Fanger’s thermal comfort model are in the acceptable range of occupant’s thermal comfort. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5127624 |