Thermally controlled topological states for elastic waves

Developing a tunable phononic crystal (PC) based on relatively simple technology is challenging. Herein, we report a thermally controlled two-dimensional PC which consists of a honeycomb array of thermosensitive perovskite ferroelectric scatterers. The inversion symmetry of the PC is broken, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-12, Vol.115 (25)
Hauptverfasser: Tang, Haocheng, Li, Honglang, Xie, Xiang, Zhang, Yue, Guo, Lianbo, Zhao, Degang, Luo, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Applied physics letters
container_volume 115
creator Tang, Haocheng
Li, Honglang
Xie, Xiang
Zhang, Yue
Guo, Lianbo
Zhao, Degang
Luo, Wei
description Developing a tunable phononic crystal (PC) based on relatively simple technology is challenging. Herein, we report a thermally controlled two-dimensional PC which consists of a honeycomb array of thermosensitive perovskite ferroelectric scatterers. The inversion symmetry of the PC is broken, and the topological properties of the band structure are readily tuned by heating the scatterers in a well-controlled manner to form a temperature gradient in the unit cell. Numerical simulation is used to demonstrate the one-way propagation of the edge state along the interface between two PCs with different topological properties and robustness of the edge states against defects. The propagation of the interfacial wave can be tuned extensively by varying the temperature in a few unit cells of the honeycomb lattice array. The present study could be potentially significant in designing tunable, efficient, and multifunctional acoustic devices.
doi_str_mv 10.1063/1.5123178
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5123178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327636785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d6846fd7009c82d79b4504670e597e45c9f7883cd09c2b0aa573cca5dfac39e33</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-w4Elha7LZvI5SfEHBSz2HNA_dkm7WJK302xvZogfB0zDMjxnmD8AlgjMEKb5FM4IajBg_AhMEGasxQvwYTCCEuKaCoFNwltK6tKTBeALE8t3GjfJ-X-nQ5xi8t6bKYQg-vHVa-SpllW2qXIiV9SrlTlefamfTOThxyid7cahT8Ppwv5w_1YuXx-f53aLWuGG5NpS31BkGodC8MUysWgJbyqAlgtmWaOEY51ibMm9WUCnCsNaKGKc0FhbjKbga9w4xfGxtynIdtrEvJ2VTLlBMGSdFXY9Kx5BStE4OsduouJcIyu9kJJKHZIq9GW3SXXmuC_0P3oX4C-Vg3H_47-YvyeRxDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327636785</pqid></control><display><type>article</type><title>Thermally controlled topological states for elastic waves</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tang, Haocheng ; Li, Honglang ; Xie, Xiang ; Zhang, Yue ; Guo, Lianbo ; Zhao, Degang ; Luo, Wei</creator><creatorcontrib>Tang, Haocheng ; Li, Honglang ; Xie, Xiang ; Zhang, Yue ; Guo, Lianbo ; Zhao, Degang ; Luo, Wei</creatorcontrib><description>Developing a tunable phononic crystal (PC) based on relatively simple technology is challenging. Herein, we report a thermally controlled two-dimensional PC which consists of a honeycomb array of thermosensitive perovskite ferroelectric scatterers. The inversion symmetry of the PC is broken, and the topological properties of the band structure are readily tuned by heating the scatterers in a well-controlled manner to form a temperature gradient in the unit cell. Numerical simulation is used to demonstrate the one-way propagation of the edge state along the interface between two PCs with different topological properties and robustness of the edge states against defects. The propagation of the interfacial wave can be tuned extensively by varying the temperature in a few unit cells of the honeycomb lattice array. The present study could be potentially significant in designing tunable, efficient, and multifunctional acoustic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5123178</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arrays ; Computer simulation ; Crystal defects ; Elastic waves ; Ferroelectric materials ; Ferroelectricity ; Perovskites ; Robustness (mathematics) ; Temperature gradients ; Topology ; Unit cell ; Wave propagation</subject><ispartof>Applied physics letters, 2019-12, Vol.115 (25)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d6846fd7009c82d79b4504670e597e45c9f7883cd09c2b0aa573cca5dfac39e33</citedby><cites>FETCH-LOGICAL-c327t-d6846fd7009c82d79b4504670e597e45c9f7883cd09c2b0aa573cca5dfac39e33</cites><orcidid>0000-0002-4910-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5123178$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Tang, Haocheng</creatorcontrib><creatorcontrib>Li, Honglang</creatorcontrib><creatorcontrib>Xie, Xiang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Lianbo</creatorcontrib><creatorcontrib>Zhao, Degang</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><title>Thermally controlled topological states for elastic waves</title><title>Applied physics letters</title><description>Developing a tunable phononic crystal (PC) based on relatively simple technology is challenging. Herein, we report a thermally controlled two-dimensional PC which consists of a honeycomb array of thermosensitive perovskite ferroelectric scatterers. The inversion symmetry of the PC is broken, and the topological properties of the band structure are readily tuned by heating the scatterers in a well-controlled manner to form a temperature gradient in the unit cell. Numerical simulation is used to demonstrate the one-way propagation of the edge state along the interface between two PCs with different topological properties and robustness of the edge states against defects. The propagation of the interfacial wave can be tuned extensively by varying the temperature in a few unit cells of the honeycomb lattice array. The present study could be potentially significant in designing tunable, efficient, and multifunctional acoustic devices.</description><subject>Applied physics</subject><subject>Arrays</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Elastic waves</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Perovskites</subject><subject>Robustness (mathematics)</subject><subject>Temperature gradients</subject><subject>Topology</subject><subject>Unit cell</subject><subject>Wave propagation</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-w4Elha7LZvI5SfEHBSz2HNA_dkm7WJK302xvZogfB0zDMjxnmD8AlgjMEKb5FM4IajBg_AhMEGasxQvwYTCCEuKaCoFNwltK6tKTBeALE8t3GjfJ-X-nQ5xi8t6bKYQg-vHVa-SpllW2qXIiV9SrlTlefamfTOThxyid7cahT8Ppwv5w_1YuXx-f53aLWuGG5NpS31BkGodC8MUysWgJbyqAlgtmWaOEY51ibMm9WUCnCsNaKGKc0FhbjKbga9w4xfGxtynIdtrEvJ2VTLlBMGSdFXY9Kx5BStE4OsduouJcIyu9kJJKHZIq9GW3SXXmuC_0P3oX4C-Vg3H_47-YvyeRxDQ</recordid><startdate>20191216</startdate><enddate>20191216</enddate><creator>Tang, Haocheng</creator><creator>Li, Honglang</creator><creator>Xie, Xiang</creator><creator>Zhang, Yue</creator><creator>Guo, Lianbo</creator><creator>Zhao, Degang</creator><creator>Luo, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4910-5247</orcidid></search><sort><creationdate>20191216</creationdate><title>Thermally controlled topological states for elastic waves</title><author>Tang, Haocheng ; Li, Honglang ; Xie, Xiang ; Zhang, Yue ; Guo, Lianbo ; Zhao, Degang ; Luo, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d6846fd7009c82d79b4504670e597e45c9f7883cd09c2b0aa573cca5dfac39e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Arrays</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Elastic waves</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Perovskites</topic><topic>Robustness (mathematics)</topic><topic>Temperature gradients</topic><topic>Topology</topic><topic>Unit cell</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Haocheng</creatorcontrib><creatorcontrib>Li, Honglang</creatorcontrib><creatorcontrib>Xie, Xiang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Lianbo</creatorcontrib><creatorcontrib>Zhao, Degang</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Haocheng</au><au>Li, Honglang</au><au>Xie, Xiang</au><au>Zhang, Yue</au><au>Guo, Lianbo</au><au>Zhao, Degang</au><au>Luo, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally controlled topological states for elastic waves</atitle><jtitle>Applied physics letters</jtitle><date>2019-12-16</date><risdate>2019</risdate><volume>115</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Developing a tunable phononic crystal (PC) based on relatively simple technology is challenging. Herein, we report a thermally controlled two-dimensional PC which consists of a honeycomb array of thermosensitive perovskite ferroelectric scatterers. The inversion symmetry of the PC is broken, and the topological properties of the band structure are readily tuned by heating the scatterers in a well-controlled manner to form a temperature gradient in the unit cell. Numerical simulation is used to demonstrate the one-way propagation of the edge state along the interface between two PCs with different topological properties and robustness of the edge states against defects. The propagation of the interfacial wave can be tuned extensively by varying the temperature in a few unit cells of the honeycomb lattice array. The present study could be potentially significant in designing tunable, efficient, and multifunctional acoustic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5123178</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4910-5247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-12, Vol.115 (25)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5123178
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Arrays
Computer simulation
Crystal defects
Elastic waves
Ferroelectric materials
Ferroelectricity
Perovskites
Robustness (mathematics)
Temperature gradients
Topology
Unit cell
Wave propagation
title Thermally controlled topological states for elastic waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20controlled%20topological%20states%20for%20elastic%20waves&rft.jtitle=Applied%20physics%20letters&rft.au=Tang,%20Haocheng&rft.date=2019-12-16&rft.volume=115&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5123178&rft_dat=%3Cproquest_scita%3E2327636785%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327636785&rft_id=info:pmid/&rfr_iscdi=true