Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures

The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-08, Vol.115 (7)
Hauptverfasser: Gehring, Pascal, van der Star, Martijn, Evangeli, Charalambos, Le Roy, Jennifer J., Bogani, Lapo, Kolosov, Oleg V., van der Zant, Herre S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 115
creator Gehring, Pascal
van der Star, Martijn
Evangeli, Charalambos
Le Roy, Jennifer J.
Bogani, Lapo
Kolosov, Oleg V.
van der Zant, Herre S. J.
description The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear ( Δ T ≪ T molecule) and nonlinear ( Δ T ≫ T molecule) thermoelectric transport regimes.
doi_str_mv 10.1063/1.5118861
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5118861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272415148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK4e_AYBTwpdk7RJ06Ms_oMFL3oOafqy26VtapIK--3NsoseBE_DvPkxDwaha0oWlIj8ni44pVIKeoJmlJRllid7imaEkDwTFafn6CKEbbKc5fkMmUdrW9PCEPEGdGyHNXYWh6QdZL3rwEwd4O00mNi6IWDrPI4b8L2DlEXfGhzi1LQQsI7Y-J1bw5COEfoRvI6Th3CJzqzuAlwddY4-nh7fly_Z6u35dfmwykwuWMx4VRa6aKxtSklKoEIKzm3RMGGYlSSZimlbVw3UFKQAyQsNtqy1rhveVCyfo5tD7-jd5wQhqq2b_JBeKsZKVlBOC5mo2wNlvAvBg1Wjb3vtd4oStd9QUXXcMLF3BzaYNur9Aj_wl_O_oBob-x_8t_kbVu-B5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272415148</pqid></control><display><type>article</type><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</creator><creatorcontrib>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</creatorcontrib><description>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath &lt; 2 K and enables studies in the linear ( Δ T ≪ T molecule) and nonlinear ( Δ T ≫ T molecule) thermoelectric transport regimes.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5118861</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer architecture ; Cryogenic temperature ; Electrochemical potential ; Heating ; Measuring instruments ; Resistance ; Thermoelectricity</subject><ispartof>Applied physics letters, 2019-08, Vol.115 (7)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</citedby><cites>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</cites><orcidid>0000-0002-5385-0282 ; 0000-0003-3278-9643 ; 0000-0003-3867-8530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5118861$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Gehring, Pascal</creatorcontrib><creatorcontrib>van der Star, Martijn</creatorcontrib><creatorcontrib>Evangeli, Charalambos</creatorcontrib><creatorcontrib>Le Roy, Jennifer J.</creatorcontrib><creatorcontrib>Bogani, Lapo</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><title>Applied physics letters</title><description>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath &lt; 2 K and enables studies in the linear ( Δ T ≪ T molecule) and nonlinear ( Δ T ≫ T molecule) thermoelectric transport regimes.</description><subject>Applied physics</subject><subject>Computer architecture</subject><subject>Cryogenic temperature</subject><subject>Electrochemical potential</subject><subject>Heating</subject><subject>Measuring instruments</subject><subject>Resistance</subject><subject>Thermoelectricity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK4e_AYBTwpdk7RJ06Ms_oMFL3oOafqy26VtapIK--3NsoseBE_DvPkxDwaha0oWlIj8ni44pVIKeoJmlJRllid7imaEkDwTFafn6CKEbbKc5fkMmUdrW9PCEPEGdGyHNXYWh6QdZL3rwEwd4O00mNi6IWDrPI4b8L2DlEXfGhzi1LQQsI7Y-J1bw5COEfoRvI6Th3CJzqzuAlwddY4-nh7fly_Z6u35dfmwykwuWMx4VRa6aKxtSklKoEIKzm3RMGGYlSSZimlbVw3UFKQAyQsNtqy1rhveVCyfo5tD7-jd5wQhqq2b_JBeKsZKVlBOC5mo2wNlvAvBg1Wjb3vtd4oStd9QUXXcMLF3BzaYNur9Aj_wl_O_oBob-x_8t_kbVu-B5A</recordid><startdate>20190812</startdate><enddate>20190812</enddate><creator>Gehring, Pascal</creator><creator>van der Star, Martijn</creator><creator>Evangeli, Charalambos</creator><creator>Le Roy, Jennifer J.</creator><creator>Bogani, Lapo</creator><creator>Kolosov, Oleg V.</creator><creator>van der Zant, Herre S. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5385-0282</orcidid><orcidid>https://orcid.org/0000-0003-3278-9643</orcidid><orcidid>https://orcid.org/0000-0003-3867-8530</orcidid></search><sort><creationdate>20190812</creationdate><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><author>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Computer architecture</topic><topic>Cryogenic temperature</topic><topic>Electrochemical potential</topic><topic>Heating</topic><topic>Measuring instruments</topic><topic>Resistance</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gehring, Pascal</creatorcontrib><creatorcontrib>van der Star, Martijn</creatorcontrib><creatorcontrib>Evangeli, Charalambos</creatorcontrib><creatorcontrib>Le Roy, Jennifer J.</creatorcontrib><creatorcontrib>Bogani, Lapo</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehring, Pascal</au><au>van der Star, Martijn</au><au>Evangeli, Charalambos</au><au>Le Roy, Jennifer J.</au><au>Bogani, Lapo</au><au>Kolosov, Oleg V.</au><au>van der Zant, Herre S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</atitle><jtitle>Applied physics letters</jtitle><date>2019-08-12</date><risdate>2019</risdate><volume>115</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath &lt; 2 K and enables studies in the linear ( Δ T ≪ T molecule) and nonlinear ( Δ T ≫ T molecule) thermoelectric transport regimes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5118861</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5385-0282</orcidid><orcidid>https://orcid.org/0000-0003-3278-9643</orcidid><orcidid>https://orcid.org/0000-0003-3867-8530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-08, Vol.115 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5118861
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Computer architecture
Cryogenic temperature
Electrochemical potential
Heating
Measuring instruments
Resistance
Thermoelectricity
title Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20heating%20of%20single-molecule%20junctions%20for%20thermoelectric%20studies%20at%20cryogenic%20temperatures&rft.jtitle=Applied%20physics%20letters&rft.au=Gehring,%20Pascal&rft.date=2019-08-12&rft.volume=115&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5118861&rft_dat=%3Cproquest_scita%3E2272415148%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272415148&rft_id=info:pmid/&rfr_iscdi=true