Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures
The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-08, Vol.115 (7) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Gehring, Pascal van der Star, Martijn Evangeli, Charalambos Le Roy, Jennifer J. Bogani, Lapo Kolosov, Oleg V. van der Zant, Herre S. J. |
description | The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear (
Δ
T
≪
T
molecule) and nonlinear (
Δ
T
≫
T
molecule) thermoelectric transport regimes. |
doi_str_mv | 10.1063/1.5118861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5118861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272415148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK4e_AYBTwpdk7RJ06Ms_oMFL3oOafqy26VtapIK--3NsoseBE_DvPkxDwaha0oWlIj8ni44pVIKeoJmlJRllid7imaEkDwTFafn6CKEbbKc5fkMmUdrW9PCEPEGdGyHNXYWh6QdZL3rwEwd4O00mNi6IWDrPI4b8L2DlEXfGhzi1LQQsI7Y-J1bw5COEfoRvI6Th3CJzqzuAlwddY4-nh7fly_Z6u35dfmwykwuWMx4VRa6aKxtSklKoEIKzm3RMGGYlSSZimlbVw3UFKQAyQsNtqy1rhveVCyfo5tD7-jd5wQhqq2b_JBeKsZKVlBOC5mo2wNlvAvBg1Wjb3vtd4oStd9QUXXcMLF3BzaYNur9Aj_wl_O_oBob-x_8t_kbVu-B5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272415148</pqid></control><display><type>article</type><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</creator><creatorcontrib>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</creatorcontrib><description>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear (
Δ
T
≪
T
molecule) and nonlinear (
Δ
T
≫
T
molecule) thermoelectric transport regimes.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5118861</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer architecture ; Cryogenic temperature ; Electrochemical potential ; Heating ; Measuring instruments ; Resistance ; Thermoelectricity</subject><ispartof>Applied physics letters, 2019-08, Vol.115 (7)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</citedby><cites>FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</cites><orcidid>0000-0002-5385-0282 ; 0000-0003-3278-9643 ; 0000-0003-3867-8530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5118861$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Gehring, Pascal</creatorcontrib><creatorcontrib>van der Star, Martijn</creatorcontrib><creatorcontrib>Evangeli, Charalambos</creatorcontrib><creatorcontrib>Le Roy, Jennifer J.</creatorcontrib><creatorcontrib>Bogani, Lapo</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><title>Applied physics letters</title><description>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear (
Δ
T
≪
T
molecule) and nonlinear (
Δ
T
≫
T
molecule) thermoelectric transport regimes.</description><subject>Applied physics</subject><subject>Computer architecture</subject><subject>Cryogenic temperature</subject><subject>Electrochemical potential</subject><subject>Heating</subject><subject>Measuring instruments</subject><subject>Resistance</subject><subject>Thermoelectricity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK4e_AYBTwpdk7RJ06Ms_oMFL3oOafqy26VtapIK--3NsoseBE_DvPkxDwaha0oWlIj8ni44pVIKeoJmlJRllid7imaEkDwTFafn6CKEbbKc5fkMmUdrW9PCEPEGdGyHNXYWh6QdZL3rwEwd4O00mNi6IWDrPI4b8L2DlEXfGhzi1LQQsI7Y-J1bw5COEfoRvI6Th3CJzqzuAlwddY4-nh7fly_Z6u35dfmwykwuWMx4VRa6aKxtSklKoEIKzm3RMGGYlSSZimlbVw3UFKQAyQsNtqy1rhveVCyfo5tD7-jd5wQhqq2b_JBeKsZKVlBOC5mo2wNlvAvBg1Wjb3vtd4oStd9QUXXcMLF3BzaYNur9Aj_wl_O_oBob-x_8t_kbVu-B5A</recordid><startdate>20190812</startdate><enddate>20190812</enddate><creator>Gehring, Pascal</creator><creator>van der Star, Martijn</creator><creator>Evangeli, Charalambos</creator><creator>Le Roy, Jennifer J.</creator><creator>Bogani, Lapo</creator><creator>Kolosov, Oleg V.</creator><creator>van der Zant, Herre S. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5385-0282</orcidid><orcidid>https://orcid.org/0000-0003-3278-9643</orcidid><orcidid>https://orcid.org/0000-0003-3867-8530</orcidid></search><sort><creationdate>20190812</creationdate><title>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</title><author>Gehring, Pascal ; van der Star, Martijn ; Evangeli, Charalambos ; Le Roy, Jennifer J. ; Bogani, Lapo ; Kolosov, Oleg V. ; van der Zant, Herre S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5974a4dffd7807e168655f4d26c2f8065592afb9deb1e86e854aef7baabd5d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Computer architecture</topic><topic>Cryogenic temperature</topic><topic>Electrochemical potential</topic><topic>Heating</topic><topic>Measuring instruments</topic><topic>Resistance</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gehring, Pascal</creatorcontrib><creatorcontrib>van der Star, Martijn</creatorcontrib><creatorcontrib>Evangeli, Charalambos</creatorcontrib><creatorcontrib>Le Roy, Jennifer J.</creatorcontrib><creatorcontrib>Bogani, Lapo</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehring, Pascal</au><au>van der Star, Martijn</au><au>Evangeli, Charalambos</au><au>Le Roy, Jennifer J.</au><au>Bogani, Lapo</au><au>Kolosov, Oleg V.</au><au>van der Zant, Herre S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures</atitle><jtitle>Applied physics letters</jtitle><date>2019-08-12</date><risdate>2019</risdate><volume>115</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear (
Δ
T
≪
T
molecule) and nonlinear (
Δ
T
≫
T
molecule) thermoelectric transport regimes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5118861</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5385-0282</orcidid><orcidid>https://orcid.org/0000-0003-3278-9643</orcidid><orcidid>https://orcid.org/0000-0003-3867-8530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-08, Vol.115 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5118861 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Computer architecture Cryogenic temperature Electrochemical potential Heating Measuring instruments Resistance Thermoelectricity |
title | Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20heating%20of%20single-molecule%20junctions%20for%20thermoelectric%20studies%20at%20cryogenic%20temperatures&rft.jtitle=Applied%20physics%20letters&rft.au=Gehring,%20Pascal&rft.date=2019-08-12&rft.volume=115&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5118861&rft_dat=%3Cproquest_scita%3E2272415148%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272415148&rft_id=info:pmid/&rfr_iscdi=true |