Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP

Third-generation (Gen3) concentrating solar power (CSP) technologies require a thermally stable and inexpensive fluid to be used for heat transfer and thermal energy storage. For Gen3 CSP plants, a molten salt composed of MgCl2 – KCl – NaCl is a new candidate, but it is familiar enough to plants wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vidal, Judith C., Klammer, Noah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2126
creator Vidal, Judith C.
Klammer, Noah
description Third-generation (Gen3) concentrating solar power (CSP) technologies require a thermally stable and inexpensive fluid to be used for heat transfer and thermal energy storage. For Gen3 CSP plants, a molten salt composed of MgCl2 – KCl – NaCl is a new candidate, but it is familiar enough to plants with existing molten-salt systems. To determine the best composition for the heat-transfer fluid, we mixed nine different ratios of the salts, dry/purified them following strict protocols, and tested them with a differential scanning calorimeter and a thermogravimetric analyzer. Our results showed that the lowest melting and solidification temperature of 385°C ± 1°C was determined for the eutectic composition 44.7 MgCl2 – 25.8 KCl – 29.4 NaCl (mol.%). We determined that improper handling and preparation of the salt mixture highly affects its thermal properties because of moisture absorption. Preparation standards—particularly the dehydration of hydrous MgCl2—merit further development.
doi_str_mv 10.1063/1.5117601
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5117601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264442721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-51f488183a2539be7dcb56512c31a42a4a9f469bc00fdf613a9d7a5d9d988e3a3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKsH_0HQm7BrJh_7cZRaq6BUqIXeQprNuinbZN1NW_rv3dKCN09zeeZlnncQugUSA0nYI8QCIE0InKEBCAFRmkByjgaE5DyinC0u0VXXrQiheZpmA7T48HUwDuuq9q0tDA5GV87X_nuPGxWqndrj4PHamIBDZfA8nsX4eTrG3cZ1lQ_YOhusCnZr8M6GCk-MY3g0-7xGF6WqO3NzmkM0fxl_jV6j9-nkbfT0HmkmRIgElDzLIGOKCpYvTVropUgEUM1Acaq4ykue5EtNSFmUCTCVF6kSRV7kWWaYYkN0d8z1XbCy0_YgoL1zRgfZN9Br8h66P0JN6382pgty5Tet6--SlCacc5pS6KmHI3VI6ZW8k01r16rdy61vJchTtbIpyv9gIPLwi78F9guYoXky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2264442721</pqid></control><display><type>conference_proceeding</type><title>Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP</title><source>AIP Journals Complete</source><creator>Vidal, Judith C. ; Klammer, Noah</creator><contributor>Richter, Christoph</contributor><creatorcontrib>Vidal, Judith C. ; Klammer, Noah ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Richter, Christoph</creatorcontrib><description>Third-generation (Gen3) concentrating solar power (CSP) technologies require a thermally stable and inexpensive fluid to be used for heat transfer and thermal energy storage. For Gen3 CSP plants, a molten salt composed of MgCl2 – KCl – NaCl is a new candidate, but it is familiar enough to plants with existing molten-salt systems. To determine the best composition for the heat-transfer fluid, we mixed nine different ratios of the salts, dry/purified them following strict protocols, and tested them with a differential scanning calorimeter and a thermogravimetric analyzer. Our results showed that the lowest melting and solidification temperature of 385°C ± 1°C was determined for the eutectic composition 44.7 MgCl2 – 25.8 KCl – 29.4 NaCl (mol.%). We determined that improper handling and preparation of the salt mixture highly affects its thermal properties because of moisture absorption. Preparation standards—particularly the dehydration of hydrous MgCl2—merit further development.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5117601</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>associated liquids ; concentrated solar power ; Dehydration ; Differential scanning calorimetry ; Energy storage ; Eutectic composition ; Magnesium chloride ; materials properties ; Moisture absorption ; Molten salts ; OTHER INSTRUMENTATION ; Potassium chloride ; SOLAR ENERGY ; Solidification ; Thermal energy ; thermal instruments ; Thermal stability ; Thermodynamic properties</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2126 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-51f488183a2539be7dcb56512c31a42a4a9f469bc00fdf613a9d7a5d9d988e3a3</citedby><orcidid>0000000205913250 ; 0000000181813182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5117601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,885,4512,23930,23931,25140,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1559774$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Richter, Christoph</contributor><creatorcontrib>Vidal, Judith C.</creatorcontrib><creatorcontrib>Klammer, Noah</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP</title><title>AIP Conference Proceedings</title><description>Third-generation (Gen3) concentrating solar power (CSP) technologies require a thermally stable and inexpensive fluid to be used for heat transfer and thermal energy storage. For Gen3 CSP plants, a molten salt composed of MgCl2 – KCl – NaCl is a new candidate, but it is familiar enough to plants with existing molten-salt systems. To determine the best composition for the heat-transfer fluid, we mixed nine different ratios of the salts, dry/purified them following strict protocols, and tested them with a differential scanning calorimeter and a thermogravimetric analyzer. Our results showed that the lowest melting and solidification temperature of 385°C ± 1°C was determined for the eutectic composition 44.7 MgCl2 – 25.8 KCl – 29.4 NaCl (mol.%). We determined that improper handling and preparation of the salt mixture highly affects its thermal properties because of moisture absorption. Preparation standards—particularly the dehydration of hydrous MgCl2—merit further development.</description><subject>associated liquids</subject><subject>concentrated solar power</subject><subject>Dehydration</subject><subject>Differential scanning calorimetry</subject><subject>Energy storage</subject><subject>Eutectic composition</subject><subject>Magnesium chloride</subject><subject>materials properties</subject><subject>Moisture absorption</subject><subject>Molten salts</subject><subject>OTHER INSTRUMENTATION</subject><subject>Potassium chloride</subject><subject>SOLAR ENERGY</subject><subject>Solidification</subject><subject>Thermal energy</subject><subject>thermal instruments</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kU1LAzEQhoMoWKsH_0HQm7BrJh_7cZRaq6BUqIXeQprNuinbZN1NW_rv3dKCN09zeeZlnncQugUSA0nYI8QCIE0InKEBCAFRmkByjgaE5DyinC0u0VXXrQiheZpmA7T48HUwDuuq9q0tDA5GV87X_nuPGxWqndrj4PHamIBDZfA8nsX4eTrG3cZ1lQ_YOhusCnZr8M6GCk-MY3g0-7xGF6WqO3NzmkM0fxl_jV6j9-nkbfT0HmkmRIgElDzLIGOKCpYvTVropUgEUM1Acaq4ykue5EtNSFmUCTCVF6kSRV7kWWaYYkN0d8z1XbCy0_YgoL1zRgfZN9Br8h66P0JN6382pgty5Tet6--SlCacc5pS6KmHI3VI6ZW8k01r16rdy61vJchTtbIpyv9gIPLwi78F9guYoXky</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Vidal, Judith C.</creator><creator>Klammer, Noah</creator><general>American Institute of Physics</general><general>Melville, NY: AIP Publishing</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000205913250</orcidid><orcidid>https://orcid.org/0000000181813182</orcidid></search><sort><creationdate>20190725</creationdate><title>Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP</title><author>Vidal, Judith C. ; Klammer, Noah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-51f488183a2539be7dcb56512c31a42a4a9f469bc00fdf613a9d7a5d9d988e3a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>associated liquids</topic><topic>concentrated solar power</topic><topic>Dehydration</topic><topic>Differential scanning calorimetry</topic><topic>Energy storage</topic><topic>Eutectic composition</topic><topic>Magnesium chloride</topic><topic>materials properties</topic><topic>Moisture absorption</topic><topic>Molten salts</topic><topic>OTHER INSTRUMENTATION</topic><topic>Potassium chloride</topic><topic>SOLAR ENERGY</topic><topic>Solidification</topic><topic>Thermal energy</topic><topic>thermal instruments</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Judith C.</creatorcontrib><creatorcontrib>Klammer, Noah</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Judith C.</au><au>Klammer, Noah</au><au>Richter, Christoph</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-07-25</date><risdate>2019</risdate><volume>2126</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Third-generation (Gen3) concentrating solar power (CSP) technologies require a thermally stable and inexpensive fluid to be used for heat transfer and thermal energy storage. For Gen3 CSP plants, a molten salt composed of MgCl2 – KCl – NaCl is a new candidate, but it is familiar enough to plants with existing molten-salt systems. To determine the best composition for the heat-transfer fluid, we mixed nine different ratios of the salts, dry/purified them following strict protocols, and tested them with a differential scanning calorimeter and a thermogravimetric analyzer. Our results showed that the lowest melting and solidification temperature of 385°C ± 1°C was determined for the eutectic composition 44.7 MgCl2 – 25.8 KCl – 29.4 NaCl (mol.%). We determined that improper handling and preparation of the salt mixture highly affects its thermal properties because of moisture absorption. Preparation standards—particularly the dehydration of hydrous MgCl2—merit further development.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5117601</doi><tpages>9</tpages><orcidid>https://orcid.org/0000000205913250</orcidid><orcidid>https://orcid.org/0000000181813182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2019, Vol.2126 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5117601
source AIP Journals Complete
subjects associated liquids
concentrated solar power
Dehydration
Differential scanning calorimetry
Energy storage
Eutectic composition
Magnesium chloride
materials properties
Moisture absorption
Molten salts
OTHER INSTRUMENTATION
Potassium chloride
SOLAR ENERGY
Solidification
Thermal energy
thermal instruments
Thermal stability
Thermodynamic properties
title Molten chloride technology pathway to meet the U.S. DOE sunshot initiative with Gen3 CSP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Molten%20chloride%20technology%20pathway%20to%20meet%20the%20U.S.%20DOE%20sunshot%20initiative%20with%20Gen3%20CSP&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Vidal,%20Judith%20C.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-07-25&rft.volume=2126&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5117601&rft_dat=%3Cproquest_scita%3E2264442721%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264442721&rft_id=info:pmid/&rfr_iscdi=true