Non-destructive characterization of thin layer resonant tunneling diodes

We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-09, Vol.126 (12)
Hauptverfasser: Baba, Răzvan, Jacobs, Kristof J. P., Harrison, Brett A., Stevens, Ben J., Mukai, Toshikazu, Hogg, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 126
creator Baba, Răzvan
Jacobs, Kristof J. P.
Harrison, Brett A.
Stevens, Ben J.
Mukai, Toshikazu
Hogg, Richard A.
description We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementary techniques to increase the confidence of the characterized structure. The lattice-matched InGaAs is characterized and found to be of high quality. We discuss the inclusion of an undoped “copy” well (C-well) in terms of enhancements to HR-XRD and LT-PL characterization and quantify the improved precision in determining the structure. As a consequence of this enhanced precision in the determination of physical structure, the AlAs barriers and quantum well (QW) system are found to contain nonideal material interfaces. Their roughness is characterized in terms of the full width to half-maximum of the split LT-PL emission peaks, revealing a ±1 atomic sheet variance to the QW width. We show how barrier asymmetry can be detected through fitting of both optical spectra and HR-XRD rocking curves.
doi_str_mv 10.1063/1.5113585
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5113585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296948365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e7e78b5b7b6584ad4dca7941aa1b1db7145fd16acde59ad294e6c9e618cef0a73</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2Z383WUolYoetFzyCZZm1KTmmQL9de7ugXvnuby8M7Mi9Al4BlgWt_CjADUhJMjNAHMRckIwcdognEFJRdMnKKzlNYYA_BaTNDiOfjS2JRjr7Pb2UKvVFQ62-i-VHbBF6Er8sr5YqP2NhbRpuCVz0Xuvbcb598L48IQcI5OOrVJ9uIwp-jt4f51viiXL49P87tlqWta5dIyy3hLWtZSwhtlGqMVEw0oBS2YlkFDOgNUaWOJUKYSjaVaWApc2w4rVk_R1Zi7jeGzHw6X69BHP6yUVSWoaHhNyaCuR6VjSCnaTm6j-1BxLwHLn6IkyENRg70ZbdIu__78P7wL8Q_Krenqb_2PeBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296948365</pqid></control><display><type>article</type><title>Non-destructive characterization of thin layer resonant tunneling diodes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Baba, Răzvan ; Jacobs, Kristof J. P. ; Harrison, Brett A. ; Stevens, Ben J. ; Mukai, Toshikazu ; Hogg, Richard A.</creator><creatorcontrib>Baba, Răzvan ; Jacobs, Kristof J. P. ; Harrison, Brett A. ; Stevens, Ben J. ; Mukai, Toshikazu ; Hogg, Richard A.</creatorcontrib><description>We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementary techniques to increase the confidence of the characterized structure. The lattice-matched InGaAs is characterized and found to be of high quality. We discuss the inclusion of an undoped “copy” well (C-well) in terms of enhancements to HR-XRD and LT-PL characterization and quantify the improved precision in determining the structure. As a consequence of this enhanced precision in the determination of physical structure, the AlAs barriers and quantum well (QW) system are found to contain nonideal material interfaces. Their roughness is characterized in terms of the full width to half-maximum of the split LT-PL emission peaks, revealing a ±1 atomic sheet variance to the QW width. We show how barrier asymmetry can be detected through fitting of both optical spectra and HR-XRD rocking curves.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5113585</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum arsenides ; Applied physics ; Confidence ; Diodes ; Lattice matching ; Photoluminescence ; Quantum wells ; Resonant tunneling ; Spectrum analysis ; Substrates</subject><ispartof>Journal of applied physics, 2019-09, Vol.126 (12)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e7e78b5b7b6584ad4dca7941aa1b1db7145fd16acde59ad294e6c9e618cef0a73</citedby><cites>FETCH-LOGICAL-c362t-e7e78b5b7b6584ad4dca7941aa1b1db7145fd16acde59ad294e6c9e618cef0a73</cites><orcidid>0000-0003-4561-8704 ; 0000-0002-0781-6809 ; 0000-0002-4642-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5113585$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Baba, Răzvan</creatorcontrib><creatorcontrib>Jacobs, Kristof J. P.</creatorcontrib><creatorcontrib>Harrison, Brett A.</creatorcontrib><creatorcontrib>Stevens, Ben J.</creatorcontrib><creatorcontrib>Mukai, Toshikazu</creatorcontrib><creatorcontrib>Hogg, Richard A.</creatorcontrib><title>Non-destructive characterization of thin layer resonant tunneling diodes</title><title>Journal of applied physics</title><description>We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementary techniques to increase the confidence of the characterized structure. The lattice-matched InGaAs is characterized and found to be of high quality. We discuss the inclusion of an undoped “copy” well (C-well) in terms of enhancements to HR-XRD and LT-PL characterization and quantify the improved precision in determining the structure. As a consequence of this enhanced precision in the determination of physical structure, the AlAs barriers and quantum well (QW) system are found to contain nonideal material interfaces. Their roughness is characterized in terms of the full width to half-maximum of the split LT-PL emission peaks, revealing a ±1 atomic sheet variance to the QW width. We show how barrier asymmetry can be detected through fitting of both optical spectra and HR-XRD rocking curves.</description><subject>Aluminum arsenides</subject><subject>Applied physics</subject><subject>Confidence</subject><subject>Diodes</subject><subject>Lattice matching</subject><subject>Photoluminescence</subject><subject>Quantum wells</subject><subject>Resonant tunneling</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2Z383WUolYoetFzyCZZm1KTmmQL9de7ugXvnuby8M7Mi9Al4BlgWt_CjADUhJMjNAHMRckIwcdognEFJRdMnKKzlNYYA_BaTNDiOfjS2JRjr7Pb2UKvVFQ62-i-VHbBF6Er8sr5YqP2NhbRpuCVz0Xuvbcb598L48IQcI5OOrVJ9uIwp-jt4f51viiXL49P87tlqWta5dIyy3hLWtZSwhtlGqMVEw0oBS2YlkFDOgNUaWOJUKYSjaVaWApc2w4rVk_R1Zi7jeGzHw6X69BHP6yUVSWoaHhNyaCuR6VjSCnaTm6j-1BxLwHLn6IkyENRg70ZbdIu__78P7wL8Q_Krenqb_2PeBU</recordid><startdate>20190928</startdate><enddate>20190928</enddate><creator>Baba, Răzvan</creator><creator>Jacobs, Kristof J. P.</creator><creator>Harrison, Brett A.</creator><creator>Stevens, Ben J.</creator><creator>Mukai, Toshikazu</creator><creator>Hogg, Richard A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4561-8704</orcidid><orcidid>https://orcid.org/0000-0002-0781-6809</orcidid><orcidid>https://orcid.org/0000-0002-4642-5843</orcidid></search><sort><creationdate>20190928</creationdate><title>Non-destructive characterization of thin layer resonant tunneling diodes</title><author>Baba, Răzvan ; Jacobs, Kristof J. P. ; Harrison, Brett A. ; Stevens, Ben J. ; Mukai, Toshikazu ; Hogg, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e7e78b5b7b6584ad4dca7941aa1b1db7145fd16acde59ad294e6c9e618cef0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum arsenides</topic><topic>Applied physics</topic><topic>Confidence</topic><topic>Diodes</topic><topic>Lattice matching</topic><topic>Photoluminescence</topic><topic>Quantum wells</topic><topic>Resonant tunneling</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baba, Răzvan</creatorcontrib><creatorcontrib>Jacobs, Kristof J. P.</creatorcontrib><creatorcontrib>Harrison, Brett A.</creatorcontrib><creatorcontrib>Stevens, Ben J.</creatorcontrib><creatorcontrib>Mukai, Toshikazu</creatorcontrib><creatorcontrib>Hogg, Richard A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baba, Răzvan</au><au>Jacobs, Kristof J. P.</au><au>Harrison, Brett A.</au><au>Stevens, Ben J.</au><au>Mukai, Toshikazu</au><au>Hogg, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-destructive characterization of thin layer resonant tunneling diodes</atitle><jtitle>Journal of applied physics</jtitle><date>2019-09-28</date><risdate>2019</risdate><volume>126</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementary techniques to increase the confidence of the characterized structure. The lattice-matched InGaAs is characterized and found to be of high quality. We discuss the inclusion of an undoped “copy” well (C-well) in terms of enhancements to HR-XRD and LT-PL characterization and quantify the improved precision in determining the structure. As a consequence of this enhanced precision in the determination of physical structure, the AlAs barriers and quantum well (QW) system are found to contain nonideal material interfaces. Their roughness is characterized in terms of the full width to half-maximum of the split LT-PL emission peaks, revealing a ±1 atomic sheet variance to the QW width. We show how barrier asymmetry can be detected through fitting of both optical spectra and HR-XRD rocking curves.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5113585</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4561-8704</orcidid><orcidid>https://orcid.org/0000-0002-0781-6809</orcidid><orcidid>https://orcid.org/0000-0002-4642-5843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-09, Vol.126 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_5113585
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum arsenides
Applied physics
Confidence
Diodes
Lattice matching
Photoluminescence
Quantum wells
Resonant tunneling
Spectrum analysis
Substrates
title Non-destructive characterization of thin layer resonant tunneling diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-destructive%20characterization%20of%20thin%20layer%20resonant%20tunneling%20diodes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Baba,%20R%C4%83zvan&rft.date=2019-09-28&rft.volume=126&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5113585&rft_dat=%3Cproquest_scita%3E2296948365%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296948365&rft_id=info:pmid/&rfr_iscdi=true