Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian

This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-01, Vol.61 (1)
Hauptverfasser: Lee, Jun Ik, Kim, Jae-Myoung, Kim, Yun-Ho, Lee, Jongrak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 61
creator Lee, Jun Ik
Kim, Jae-Myoung
Kim, Yun-Ho
Lee, Jongrak
description This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.
doi_str_mv 10.1063/1.5111786
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5111786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335339245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrfnczR5F_IKKFz2HmCaaGjfbJFvtv3frFj0IngZmHoaZF4BjjKYYlfQcTznGuBLlDhhhJOqiKrnYBSOECCkIE2IfHKS0QAhjwdgI2PvOZ9d6p11ew2Dhh1FvMAXfZReaBHOATWgKH7Ty0Hjv2uw0NMtODXPXrIJfueYF5lcDbVR60-9te_o5KWaq9Uo71RyCPat8MkfbOgZP11ePl7fF7OHm7vJiVmhKqlzMDUE1qZEphWFKqLkt-_NrrgWrMS85I1VVIsZQaWldkeqZWYUY4nOhKsGZpWNwMuxtY1h2JmW5CF3s70mSUMoprQnjvZoMSseQUjRWttG9q7iWGMlNjBLLbYy9PRts6hP6fvoHr0L8hbKd2__w381f7n6ARw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335339245</pqid></control><display><type>article</type><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</creator><creatorcontrib>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</creatorcontrib><description>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5111786</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Elliptic functions ; Physics ; Theorems</subject><ispartof>Journal of mathematical physics, 2020-01, Vol.61 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</citedby><cites>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</cites><orcidid>0000-0002-3558-4021 ; 0000-0002-3446-6736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5111786$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76354</link.rule.ids></links><search><creatorcontrib>Lee, Jun Ik</creatorcontrib><creatorcontrib>Kim, Jae-Myoung</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><creatorcontrib>Lee, Jongrak</creatorcontrib><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><title>Journal of mathematical physics</title><description>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</description><subject>Elliptic functions</subject><subject>Physics</subject><subject>Theorems</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrfnczR5F_IKKFz2HmCaaGjfbJFvtv3frFj0IngZmHoaZF4BjjKYYlfQcTznGuBLlDhhhJOqiKrnYBSOECCkIE2IfHKS0QAhjwdgI2PvOZ9d6p11ew2Dhh1FvMAXfZReaBHOATWgKH7Ty0Hjv2uw0NMtODXPXrIJfueYF5lcDbVR60-9te_o5KWaq9Uo71RyCPat8MkfbOgZP11ePl7fF7OHm7vJiVmhKqlzMDUE1qZEphWFKqLkt-_NrrgWrMS85I1VVIsZQaWldkeqZWYUY4nOhKsGZpWNwMuxtY1h2JmW5CF3s70mSUMoprQnjvZoMSseQUjRWttG9q7iWGMlNjBLLbYy9PRts6hP6fvoHr0L8hbKd2__w381f7n6ARw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lee, Jun Ik</creator><creator>Kim, Jae-Myoung</creator><creator>Kim, Yun-Ho</creator><creator>Lee, Jongrak</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3558-4021</orcidid><orcidid>https://orcid.org/0000-0002-3446-6736</orcidid></search><sort><creationdate>20200101</creationdate><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><author>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elliptic functions</topic><topic>Physics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun Ik</creatorcontrib><creatorcontrib>Kim, Jae-Myoung</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><creatorcontrib>Lee, Jongrak</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun Ik</au><au>Kim, Jae-Myoung</au><au>Kim, Yun-Ho</au><au>Lee, Jongrak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>61</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5111786</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3558-4021</orcidid><orcidid>https://orcid.org/0000-0002-3446-6736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2020-01, Vol.61 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_5111786
source AIP Journals Complete; Alma/SFX Local Collection
subjects Elliptic functions
Physics
Theorems
title Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20of%20weak%20solutions%20to%20non-local%20elliptic%20equations%20involving%20the%20fractional%20p(x)-Laplacian&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Lee,%20Jun%20Ik&rft.date=2020-01-01&rft.volume=61&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5111786&rft_dat=%3Cproquest_scita%3E2335339245%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335339245&rft_id=info:pmid/&rfr_iscdi=true