Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian
This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-01, Vol.61 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 61 |
creator | Lee, Jun Ik Kim, Jae-Myoung Kim, Yun-Ho Lee, Jongrak |
description | This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions. |
doi_str_mv | 10.1063/1.5111786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5111786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335339245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrfnczR5F_IKKFz2HmCaaGjfbJFvtv3frFj0IngZmHoaZF4BjjKYYlfQcTznGuBLlDhhhJOqiKrnYBSOECCkIE2IfHKS0QAhjwdgI2PvOZ9d6p11ew2Dhh1FvMAXfZReaBHOATWgKH7Ty0Hjv2uw0NMtODXPXrIJfueYF5lcDbVR60-9te_o5KWaq9Uo71RyCPat8MkfbOgZP11ePl7fF7OHm7vJiVmhKqlzMDUE1qZEphWFKqLkt-_NrrgWrMS85I1VVIsZQaWldkeqZWYUY4nOhKsGZpWNwMuxtY1h2JmW5CF3s70mSUMoprQnjvZoMSseQUjRWttG9q7iWGMlNjBLLbYy9PRts6hP6fvoHr0L8hbKd2__w381f7n6ARw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335339245</pqid></control><display><type>article</type><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</creator><creatorcontrib>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</creatorcontrib><description>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5111786</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Elliptic functions ; Physics ; Theorems</subject><ispartof>Journal of mathematical physics, 2020-01, Vol.61 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</citedby><cites>FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</cites><orcidid>0000-0002-3558-4021 ; 0000-0002-3446-6736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5111786$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76354</link.rule.ids></links><search><creatorcontrib>Lee, Jun Ik</creatorcontrib><creatorcontrib>Kim, Jae-Myoung</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><creatorcontrib>Lee, Jongrak</creatorcontrib><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><title>Journal of mathematical physics</title><description>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</description><subject>Elliptic functions</subject><subject>Physics</subject><subject>Theorems</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrfnczR5F_IKKFz2HmCaaGjfbJFvtv3frFj0IngZmHoaZF4BjjKYYlfQcTznGuBLlDhhhJOqiKrnYBSOECCkIE2IfHKS0QAhjwdgI2PvOZ9d6p11ew2Dhh1FvMAXfZReaBHOATWgKH7Ty0Hjv2uw0NMtODXPXrIJfueYF5lcDbVR60-9te_o5KWaq9Uo71RyCPat8MkfbOgZP11ePl7fF7OHm7vJiVmhKqlzMDUE1qZEphWFKqLkt-_NrrgWrMS85I1VVIsZQaWldkeqZWYUY4nOhKsGZpWNwMuxtY1h2JmW5CF3s70mSUMoprQnjvZoMSseQUjRWttG9q7iWGMlNjBLLbYy9PRts6hP6fvoHr0L8hbKd2__w381f7n6ARw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lee, Jun Ik</creator><creator>Kim, Jae-Myoung</creator><creator>Kim, Yun-Ho</creator><creator>Lee, Jongrak</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3558-4021</orcidid><orcidid>https://orcid.org/0000-0002-3446-6736</orcidid></search><sort><creationdate>20200101</creationdate><title>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</title><author>Lee, Jun Ik ; Kim, Jae-Myoung ; Kim, Yun-Ho ; Lee, Jongrak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-de209290e68e4a8adf665895c84915654277604406f39727b4fa0405d8a7854f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elliptic functions</topic><topic>Physics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun Ik</creatorcontrib><creatorcontrib>Kim, Jae-Myoung</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><creatorcontrib>Lee, Jongrak</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun Ik</au><au>Kim, Jae-Myoung</au><au>Kim, Yun-Ho</au><au>Lee, Jongrak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>61</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to study the several existence results of a sequence of infinitely many solutions to the nonlocal elliptic problem involving the fractional p(x)-Laplacian without assuming the Ambrosetti and Rabinowitz type condition. The strategy of the proof for these results is to approach the problem variationally by using the fountain theorem and the dual fountain theorem. In addition, we prove that the sequence of weak solutions becomes bounded solutions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5111786</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3558-4021</orcidid><orcidid>https://orcid.org/0000-0002-3446-6736</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2020-01, Vol.61 (1) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5111786 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Elliptic functions Physics Theorems |
title | Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20of%20weak%20solutions%20to%20non-local%20elliptic%20equations%20involving%20the%20fractional%20p(x)-Laplacian&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Lee,%20Jun%20Ik&rft.date=2020-01-01&rft.volume=61&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5111786&rft_dat=%3Cproquest_scita%3E2335339245%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335339245&rft_id=info:pmid/&rfr_iscdi=true |