ITO-based electro-absorption modulator for photonic neural activation function
Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting me...
Gespeichert in:
Veröffentlicht in: | APL materials 2019-08, Vol.7 (8), p.081112-081112-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 081112-11 |
---|---|
container_issue | 8 |
container_start_page | 081112 |
container_title | APL materials |
container_volume | 7 |
creator | Amin, R. George, J. K. Sun, S. Ferreira de Lima, T. Tait, A. N. Khurgin, J. B. Miscuglio, M. Shastri, B. J. Prucnal, P. R. El-Ghazawi, T. Sorger, V. J. |
description | Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module. |
doi_str_mv | 10.1063/1.5109039 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5109039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dfed78a23ca147afbeed2fdba70e9f72</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</originalsourceid><addsrcrecordid>eNqdkMlKA0EQhhtRMMQcfIO5KkysXmY7SnAJiLlE8NbUdFfrhMl06J4EfHsnC-rZQ1FF8fFR9TN2zWHKIZd3fJpxqEBWZ2wkeJ6nmRTv53_mSzaJcQUAHKQsq3zEXufLRVpjJJtQS6YPPsU6-rDpG98la2-3LfY-JG6ozafvfdeYpKNtwDZB0zc7PIBu25n9cMUuHLaRJqc-Zm-PD8vZc_qyeJrP7l9SowD6tDCSE2WqGM5wUGU1kOUgcmUsgIHSSFVipajCwiojrRJ5RkLlypHIiJQcs_nRaz2u9CY0awxf2mOjDwsfPjSGvjEtaevIFiUKaZCrAl1NZIWzNRZAlSvE4Lo5ukzwMQZyPz4Oep-r5vqU68DeHtlomv7w-v_gnQ-_oN5YJ78BrjeHqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ITO-based electro-absorption modulator for photonic neural activation function</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</creator><creatorcontrib>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</creatorcontrib><description>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/1.5109039</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL materials, 2019-08, Vol.7 (8), p.081112-081112-11</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</citedby><cites>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</cites><orcidid>0000-0003-0725-8736 ; 0000-0002-5152-4766 ; 0000-0002-4783-3080 ; 0000-0001-5953-8452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Amin, R.</creatorcontrib><creatorcontrib>George, J. K.</creatorcontrib><creatorcontrib>Sun, S.</creatorcontrib><creatorcontrib>Ferreira de Lima, T.</creatorcontrib><creatorcontrib>Tait, A. N.</creatorcontrib><creatorcontrib>Khurgin, J. B.</creatorcontrib><creatorcontrib>Miscuglio, M.</creatorcontrib><creatorcontrib>Shastri, B. J.</creatorcontrib><creatorcontrib>Prucnal, P. R.</creatorcontrib><creatorcontrib>El-Ghazawi, T.</creatorcontrib><creatorcontrib>Sorger, V. J.</creatorcontrib><title>ITO-based electro-absorption modulator for photonic neural activation function</title><title>APL materials</title><description>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</description><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkMlKA0EQhhtRMMQcfIO5KkysXmY7SnAJiLlE8NbUdFfrhMl06J4EfHsnC-rZQ1FF8fFR9TN2zWHKIZd3fJpxqEBWZ2wkeJ6nmRTv53_mSzaJcQUAHKQsq3zEXufLRVpjJJtQS6YPPsU6-rDpG98la2-3LfY-JG6ozafvfdeYpKNtwDZB0zc7PIBu25n9cMUuHLaRJqc-Zm-PD8vZc_qyeJrP7l9SowD6tDCSE2WqGM5wUGU1kOUgcmUsgIHSSFVipajCwiojrRJ5RkLlypHIiJQcs_nRaz2u9CY0awxf2mOjDwsfPjSGvjEtaevIFiUKaZCrAl1NZIWzNRZAlSvE4Lo5ukzwMQZyPz4Oep-r5vqU68DeHtlomv7w-v_gnQ-_oN5YJ78BrjeHqg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Amin, R.</creator><creator>George, J. K.</creator><creator>Sun, S.</creator><creator>Ferreira de Lima, T.</creator><creator>Tait, A. N.</creator><creator>Khurgin, J. B.</creator><creator>Miscuglio, M.</creator><creator>Shastri, B. J.</creator><creator>Prucnal, P. R.</creator><creator>El-Ghazawi, T.</creator><creator>Sorger, V. J.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid><orcidid>https://orcid.org/0000-0002-5152-4766</orcidid><orcidid>https://orcid.org/0000-0002-4783-3080</orcidid><orcidid>https://orcid.org/0000-0001-5953-8452</orcidid></search><sort><creationdate>20190801</creationdate><title>ITO-based electro-absorption modulator for photonic neural activation function</title><author>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, R.</creatorcontrib><creatorcontrib>George, J. K.</creatorcontrib><creatorcontrib>Sun, S.</creatorcontrib><creatorcontrib>Ferreira de Lima, T.</creatorcontrib><creatorcontrib>Tait, A. N.</creatorcontrib><creatorcontrib>Khurgin, J. B.</creatorcontrib><creatorcontrib>Miscuglio, M.</creatorcontrib><creatorcontrib>Shastri, B. J.</creatorcontrib><creatorcontrib>Prucnal, P. R.</creatorcontrib><creatorcontrib>El-Ghazawi, T.</creatorcontrib><creatorcontrib>Sorger, V. J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, R.</au><au>George, J. K.</au><au>Sun, S.</au><au>Ferreira de Lima, T.</au><au>Tait, A. N.</au><au>Khurgin, J. B.</au><au>Miscuglio, M.</au><au>Shastri, B. J.</au><au>Prucnal, P. R.</au><au>El-Ghazawi, T.</au><au>Sorger, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ITO-based electro-absorption modulator for photonic neural activation function</atitle><jtitle>APL materials</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>7</volume><issue>8</issue><spage>081112</spage><epage>081112-11</epage><pages>081112-081112-11</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/1.5109039</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid><orcidid>https://orcid.org/0000-0002-5152-4766</orcidid><orcidid>https://orcid.org/0000-0002-4783-3080</orcidid><orcidid>https://orcid.org/0000-0001-5953-8452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2166-532X |
ispartof | APL materials, 2019-08, Vol.7 (8), p.081112-081112-11 |
issn | 2166-532X 2166-532X |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5109039 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
title | ITO-based electro-absorption modulator for photonic neural activation function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ITO-based%20electro-absorption%20modulator%20for%20photonic%20neural%20activation%20function&rft.jtitle=APL%20materials&rft.au=Amin,%20R.&rft.date=2019-08-01&rft.volume=7&rft.issue=8&rft.spage=081112&rft.epage=081112-11&rft.pages=081112-081112-11&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/1.5109039&rft_dat=%3Cscitation_cross%3Eapm%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_dfed78a23ca147afbeed2fdba70e9f72&rfr_iscdi=true |