ITO-based electro-absorption modulator for photonic neural activation function

Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2019-08, Vol.7 (8), p.081112-081112-11
Hauptverfasser: Amin, R., George, J. K., Sun, S., Ferreira de Lima, T., Tait, A. N., Khurgin, J. B., Miscuglio, M., Shastri, B. J., Prucnal, P. R., El-Ghazawi, T., Sorger, V. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 081112-11
container_issue 8
container_start_page 081112
container_title APL materials
container_volume 7
creator Amin, R.
George, J. K.
Sun, S.
Ferreira de Lima, T.
Tait, A. N.
Khurgin, J. B.
Miscuglio, M.
Shastri, B. J.
Prucnal, P. R.
El-Ghazawi, T.
Sorger, V. J.
description Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.
doi_str_mv 10.1063/1.5109039
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5109039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dfed78a23ca147afbeed2fdba70e9f72</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</originalsourceid><addsrcrecordid>eNqdkMlKA0EQhhtRMMQcfIO5KkysXmY7SnAJiLlE8NbUdFfrhMl06J4EfHsnC-rZQ1FF8fFR9TN2zWHKIZd3fJpxqEBWZ2wkeJ6nmRTv53_mSzaJcQUAHKQsq3zEXufLRVpjJJtQS6YPPsU6-rDpG98la2-3LfY-JG6ozafvfdeYpKNtwDZB0zc7PIBu25n9cMUuHLaRJqc-Zm-PD8vZc_qyeJrP7l9SowD6tDCSE2WqGM5wUGU1kOUgcmUsgIHSSFVipajCwiojrRJ5RkLlypHIiJQcs_nRaz2u9CY0awxf2mOjDwsfPjSGvjEtaevIFiUKaZCrAl1NZIWzNRZAlSvE4Lo5ukzwMQZyPz4Oep-r5vqU68DeHtlomv7w-v_gnQ-_oN5YJ78BrjeHqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ITO-based electro-absorption modulator for photonic neural activation function</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</creator><creatorcontrib>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</creatorcontrib><description>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/1.5109039</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL materials, 2019-08, Vol.7 (8), p.081112-081112-11</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</citedby><cites>FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</cites><orcidid>0000-0003-0725-8736 ; 0000-0002-5152-4766 ; 0000-0002-4783-3080 ; 0000-0001-5953-8452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Amin, R.</creatorcontrib><creatorcontrib>George, J. K.</creatorcontrib><creatorcontrib>Sun, S.</creatorcontrib><creatorcontrib>Ferreira de Lima, T.</creatorcontrib><creatorcontrib>Tait, A. N.</creatorcontrib><creatorcontrib>Khurgin, J. B.</creatorcontrib><creatorcontrib>Miscuglio, M.</creatorcontrib><creatorcontrib>Shastri, B. J.</creatorcontrib><creatorcontrib>Prucnal, P. R.</creatorcontrib><creatorcontrib>El-Ghazawi, T.</creatorcontrib><creatorcontrib>Sorger, V. J.</creatorcontrib><title>ITO-based electro-absorption modulator for photonic neural activation function</title><title>APL materials</title><description>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</description><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkMlKA0EQhhtRMMQcfIO5KkysXmY7SnAJiLlE8NbUdFfrhMl06J4EfHsnC-rZQ1FF8fFR9TN2zWHKIZd3fJpxqEBWZ2wkeJ6nmRTv53_mSzaJcQUAHKQsq3zEXufLRVpjJJtQS6YPPsU6-rDpG98la2-3LfY-JG6ozafvfdeYpKNtwDZB0zc7PIBu25n9cMUuHLaRJqc-Zm-PD8vZc_qyeJrP7l9SowD6tDCSE2WqGM5wUGU1kOUgcmUsgIHSSFVipajCwiojrRJ5RkLlypHIiJQcs_nRaz2u9CY0awxf2mOjDwsfPjSGvjEtaevIFiUKaZCrAl1NZIWzNRZAlSvE4Lo5ukzwMQZyPz4Oep-r5vqU68DeHtlomv7w-v_gnQ-_oN5YJ78BrjeHqg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Amin, R.</creator><creator>George, J. K.</creator><creator>Sun, S.</creator><creator>Ferreira de Lima, T.</creator><creator>Tait, A. N.</creator><creator>Khurgin, J. B.</creator><creator>Miscuglio, M.</creator><creator>Shastri, B. J.</creator><creator>Prucnal, P. R.</creator><creator>El-Ghazawi, T.</creator><creator>Sorger, V. J.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid><orcidid>https://orcid.org/0000-0002-5152-4766</orcidid><orcidid>https://orcid.org/0000-0002-4783-3080</orcidid><orcidid>https://orcid.org/0000-0001-5953-8452</orcidid></search><sort><creationdate>20190801</creationdate><title>ITO-based electro-absorption modulator for photonic neural activation function</title><author>Amin, R. ; George, J. K. ; Sun, S. ; Ferreira de Lima, T. ; Tait, A. N. ; Khurgin, J. B. ; Miscuglio, M. ; Shastri, B. J. ; Prucnal, P. R. ; El-Ghazawi, T. ; Sorger, V. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7c31ee547033f095b0ed10264cd00c08c348a94e9a7d4c3d4265e2464fe25ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, R.</creatorcontrib><creatorcontrib>George, J. K.</creatorcontrib><creatorcontrib>Sun, S.</creatorcontrib><creatorcontrib>Ferreira de Lima, T.</creatorcontrib><creatorcontrib>Tait, A. N.</creatorcontrib><creatorcontrib>Khurgin, J. B.</creatorcontrib><creatorcontrib>Miscuglio, M.</creatorcontrib><creatorcontrib>Shastri, B. J.</creatorcontrib><creatorcontrib>Prucnal, P. R.</creatorcontrib><creatorcontrib>El-Ghazawi, T.</creatorcontrib><creatorcontrib>Sorger, V. J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, R.</au><au>George, J. K.</au><au>Sun, S.</au><au>Ferreira de Lima, T.</au><au>Tait, A. N.</au><au>Khurgin, J. B.</au><au>Miscuglio, M.</au><au>Shastri, B. J.</au><au>Prucnal, P. R.</au><au>El-Ghazawi, T.</au><au>Sorger, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ITO-based electro-absorption modulator for photonic neural activation function</atitle><jtitle>APL materials</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>7</volume><issue>8</issue><spage>081112</spage><epage>081112-11</epage><pages>081112-081112-11</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/1.5109039</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid><orcidid>https://orcid.org/0000-0002-5152-4766</orcidid><orcidid>https://orcid.org/0000-0002-4783-3080</orcidid><orcidid>https://orcid.org/0000-0001-5953-8452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2019-08, Vol.7 (8), p.081112-081112-11
issn 2166-532X
2166-532X
language eng
recordid cdi_scitation_primary_10_1063_1_5109039
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
title ITO-based electro-absorption modulator for photonic neural activation function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ITO-based%20electro-absorption%20modulator%20for%20photonic%20neural%20activation%20function&rft.jtitle=APL%20materials&rft.au=Amin,%20R.&rft.date=2019-08-01&rft.volume=7&rft.issue=8&rft.spage=081112&rft.epage=081112-11&rft.pages=081112-081112-11&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/1.5109039&rft_dat=%3Cscitation_cross%3Eapm%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_dfed78a23ca147afbeed2fdba70e9f72&rfr_iscdi=true