Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2
The pulsed Townsend technique has been used to measure transport coefficients in mixtures of tetrahydrofuran (THF) with N2 and argon. These measurements are the first investigations of swarm transport in gas mixtures with THF, with the drift velocity and effective Townsend ionization coefficient rep...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-08, Vol.151 (5) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 151 |
creator | de Urquijo, J. Casey, M. J. E. Serkovic-Loli, L. N. Cocks, D. G. Boyle, G. J. Jones, D. B. Brunger, M. J. White, R. D. |
description | The pulsed Townsend technique has been used to measure transport coefficients in mixtures of tetrahydrofuran (THF) with N2 and argon. These measurements are the first investigations of swarm transport in gas mixtures with THF, with the drift velocity and effective Townsend ionization coefficient reported for a range of reduced electric fields between 0.23 and 800 Td (1 Td = 10−21 V m2). These transport coefficients are compared with those calculated using a multiterm kinetic theory, using the cross section set developed in our previous studies [N. A. Garland et al., Phys. Rev. A 88, 062712 (2013) and M. J. E. Casey et al., J. Chem. Phys. 147, 195103 (2017)]. The swarm technique of iteratively adjusting cross sections to reproduce experimental transport measurements is subsequently utilized in this study to address the deficiencies in the earlier cross section sets, exposed by the gas mixture measurements. Refinement of the low-energy extrapolation of the quasielastic database cross section and the low-energy extrapolation and magnitude of the dissociative electron attachment cross section are detailed, as well as the adjustments to the two previously proposed neutral dissociation cross sections. These refinements were necessary in order to minimize differences between our measured and calculated transport coefficients. |
doi_str_mv | 10.1063/1.5108619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5108619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268447353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2779-9c187c346d6bc04040ccb8b61aed6f831ccce21f2f96ffe368c35c3556a431f43</originalsourceid><addsrcrecordid>eNqd0M9OwyAcB3BiNHFOD74BiSdNOqG0tPW2LM6ZTL3MM-l-Bddlo5MfU3fz4Bv4hj6J1C16N5DwJx9-wJeQU856nElxyXspZ7nkxR7phEkRZbJg-6TDWMyjQjJ5SI4Q54wxnsVJh3z0ETXiUltPG0P9TFPUCxNBY7FGry1s2n290OBdY6PJaEjBNYiBga-Domus7dOvoPhauiX1Gma2fl5rvKJ39ZtfO41toXD-6_2z72hpq93iPj4mB6ZcoD7ZjV3yOLyeDEbR-OHmdtAfRxBnWREVwPMMRCIrOQWWhAYwzaeSl7qSJhccAHTMTWwKaYwWMgeRhp7KMhHcJKJLzrZ1V65pn-bVvFk7G65UcSzzJMlEKoI636qffzpt1MrVy9JtFGeqDVlxtQs52IutRah92ebxP_zSuD-oVpUR35Q5jU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268447353</pqid></control><display><type>article</type><title>Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>de Urquijo, J. ; Casey, M. J. E. ; Serkovic-Loli, L. N. ; Cocks, D. G. ; Boyle, G. J. ; Jones, D. B. ; Brunger, M. J. ; White, R. D.</creator><creatorcontrib>de Urquijo, J. ; Casey, M. J. E. ; Serkovic-Loli, L. N. ; Cocks, D. G. ; Boyle, G. J. ; Jones, D. B. ; Brunger, M. J. ; White, R. D.</creatorcontrib><description>The pulsed Townsend technique has been used to measure transport coefficients in mixtures of tetrahydrofuran (THF) with N2 and argon. These measurements are the first investigations of swarm transport in gas mixtures with THF, with the drift velocity and effective Townsend ionization coefficient reported for a range of reduced electric fields between 0.23 and 800 Td (1 Td = 10−21 V m2). These transport coefficients are compared with those calculated using a multiterm kinetic theory, using the cross section set developed in our previous studies [N. A. Garland et al., Phys. Rev. A 88, 062712 (2013) and M. J. E. Casey et al., J. Chem. Phys. 147, 195103 (2017)]. The swarm technique of iteratively adjusting cross sections to reproduce experimental transport measurements is subsequently utilized in this study to address the deficiencies in the earlier cross section sets, exposed by the gas mixture measurements. Refinement of the low-energy extrapolation of the quasielastic database cross section and the low-energy extrapolation and magnitude of the dissociative electron attachment cross section are detailed, as well as the adjustments to the two previously proposed neutral dissociation cross sections. These refinements were necessary in order to minimize differences between our measured and calculated transport coefficients.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5108619</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Argon ; Cross-sections ; Electric fields ; Electron attachment ; Electron swarms ; Electrons ; Extrapolation ; Gas mixtures ; Ionization coefficients ; Kinetic theory ; Mathematical analysis ; Tetrahydrofuran ; Transport properties</subject><ispartof>The Journal of chemical physics, 2019-08, Vol.151 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2779-9c187c346d6bc04040ccb8b61aed6f831ccce21f2f96ffe368c35c3556a431f43</citedby><cites>FETCH-LOGICAL-c2779-9c187c346d6bc04040ccb8b61aed6f831ccce21f2f96ffe368c35c3556a431f43</cites><orcidid>0000-0002-9943-7100 ; 0000-0003-0193-211X ; 0000-0002-8581-4307 ; 0000-0003-3379-9843 ; 0000-0002-7743-2990 ; 0000-0001-5353-7440 ; 0000-0002-3155-2946 ; 0000-0001-7425-7157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5108619$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>de Urquijo, J.</creatorcontrib><creatorcontrib>Casey, M. J. E.</creatorcontrib><creatorcontrib>Serkovic-Loli, L. N.</creatorcontrib><creatorcontrib>Cocks, D. G.</creatorcontrib><creatorcontrib>Boyle, G. J.</creatorcontrib><creatorcontrib>Jones, D. B.</creatorcontrib><creatorcontrib>Brunger, M. J.</creatorcontrib><creatorcontrib>White, R. D.</creatorcontrib><title>Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2</title><title>The Journal of chemical physics</title><description>The pulsed Townsend technique has been used to measure transport coefficients in mixtures of tetrahydrofuran (THF) with N2 and argon. These measurements are the first investigations of swarm transport in gas mixtures with THF, with the drift velocity and effective Townsend ionization coefficient reported for a range of reduced electric fields between 0.23 and 800 Td (1 Td = 10−21 V m2). These transport coefficients are compared with those calculated using a multiterm kinetic theory, using the cross section set developed in our previous studies [N. A. Garland et al., Phys. Rev. A 88, 062712 (2013) and M. J. E. Casey et al., J. Chem. Phys. 147, 195103 (2017)]. The swarm technique of iteratively adjusting cross sections to reproduce experimental transport measurements is subsequently utilized in this study to address the deficiencies in the earlier cross section sets, exposed by the gas mixture measurements. Refinement of the low-energy extrapolation of the quasielastic database cross section and the low-energy extrapolation and magnitude of the dissociative electron attachment cross section are detailed, as well as the adjustments to the two previously proposed neutral dissociation cross sections. These refinements were necessary in order to minimize differences between our measured and calculated transport coefficients.</description><subject>Argon</subject><subject>Cross-sections</subject><subject>Electric fields</subject><subject>Electron attachment</subject><subject>Electron swarms</subject><subject>Electrons</subject><subject>Extrapolation</subject><subject>Gas mixtures</subject><subject>Ionization coefficients</subject><subject>Kinetic theory</subject><subject>Mathematical analysis</subject><subject>Tetrahydrofuran</subject><subject>Transport properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0M9OwyAcB3BiNHFOD74BiSdNOqG0tPW2LM6ZTL3MM-l-Bddlo5MfU3fz4Bv4hj6J1C16N5DwJx9-wJeQU856nElxyXspZ7nkxR7phEkRZbJg-6TDWMyjQjJ5SI4Q54wxnsVJh3z0ETXiUltPG0P9TFPUCxNBY7FGry1s2n290OBdY6PJaEjBNYiBga-Domus7dOvoPhauiX1Gma2fl5rvKJ39ZtfO41toXD-6_2z72hpq93iPj4mB6ZcoD7ZjV3yOLyeDEbR-OHmdtAfRxBnWREVwPMMRCIrOQWWhAYwzaeSl7qSJhccAHTMTWwKaYwWMgeRhp7KMhHcJKJLzrZ1V65pn-bVvFk7G65UcSzzJMlEKoI636qffzpt1MrVy9JtFGeqDVlxtQs52IutRah92ebxP_zSuD-oVpUR35Q5jU8</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>de Urquijo, J.</creator><creator>Casey, M. J. E.</creator><creator>Serkovic-Loli, L. N.</creator><creator>Cocks, D. G.</creator><creator>Boyle, G. J.</creator><creator>Jones, D. B.</creator><creator>Brunger, M. J.</creator><creator>White, R. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9943-7100</orcidid><orcidid>https://orcid.org/0000-0003-0193-211X</orcidid><orcidid>https://orcid.org/0000-0002-8581-4307</orcidid><orcidid>https://orcid.org/0000-0003-3379-9843</orcidid><orcidid>https://orcid.org/0000-0002-7743-2990</orcidid><orcidid>https://orcid.org/0000-0001-5353-7440</orcidid><orcidid>https://orcid.org/0000-0002-3155-2946</orcidid><orcidid>https://orcid.org/0000-0001-7425-7157</orcidid></search><sort><creationdate>20190807</creationdate><title>Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2</title><author>de Urquijo, J. ; Casey, M. J. E. ; Serkovic-Loli, L. N. ; Cocks, D. G. ; Boyle, G. J. ; Jones, D. B. ; Brunger, M. J. ; White, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2779-9c187c346d6bc04040ccb8b61aed6f831ccce21f2f96ffe368c35c3556a431f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Argon</topic><topic>Cross-sections</topic><topic>Electric fields</topic><topic>Electron attachment</topic><topic>Electron swarms</topic><topic>Electrons</topic><topic>Extrapolation</topic><topic>Gas mixtures</topic><topic>Ionization coefficients</topic><topic>Kinetic theory</topic><topic>Mathematical analysis</topic><topic>Tetrahydrofuran</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Urquijo, J.</creatorcontrib><creatorcontrib>Casey, M. J. E.</creatorcontrib><creatorcontrib>Serkovic-Loli, L. N.</creatorcontrib><creatorcontrib>Cocks, D. G.</creatorcontrib><creatorcontrib>Boyle, G. J.</creatorcontrib><creatorcontrib>Jones, D. B.</creatorcontrib><creatorcontrib>Brunger, M. J.</creatorcontrib><creatorcontrib>White, R. D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Urquijo, J.</au><au>Casey, M. J. E.</au><au>Serkovic-Loli, L. N.</au><au>Cocks, D. G.</au><au>Boyle, G. J.</au><au>Jones, D. B.</au><au>Brunger, M. J.</au><au>White, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2</atitle><jtitle>The Journal of chemical physics</jtitle><date>2019-08-07</date><risdate>2019</risdate><volume>151</volume><issue>5</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The pulsed Townsend technique has been used to measure transport coefficients in mixtures of tetrahydrofuran (THF) with N2 and argon. These measurements are the first investigations of swarm transport in gas mixtures with THF, with the drift velocity and effective Townsend ionization coefficient reported for a range of reduced electric fields between 0.23 and 800 Td (1 Td = 10−21 V m2). These transport coefficients are compared with those calculated using a multiterm kinetic theory, using the cross section set developed in our previous studies [N. A. Garland et al., Phys. Rev. A 88, 062712 (2013) and M. J. E. Casey et al., J. Chem. Phys. 147, 195103 (2017)]. The swarm technique of iteratively adjusting cross sections to reproduce experimental transport measurements is subsequently utilized in this study to address the deficiencies in the earlier cross section sets, exposed by the gas mixture measurements. Refinement of the low-energy extrapolation of the quasielastic database cross section and the low-energy extrapolation and magnitude of the dissociative electron attachment cross section are detailed, as well as the adjustments to the two previously proposed neutral dissociation cross sections. These refinements were necessary in order to minimize differences between our measured and calculated transport coefficients.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5108619</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9943-7100</orcidid><orcidid>https://orcid.org/0000-0003-0193-211X</orcidid><orcidid>https://orcid.org/0000-0002-8581-4307</orcidid><orcidid>https://orcid.org/0000-0003-3379-9843</orcidid><orcidid>https://orcid.org/0000-0002-7743-2990</orcidid><orcidid>https://orcid.org/0000-0001-5353-7440</orcidid><orcidid>https://orcid.org/0000-0002-3155-2946</orcidid><orcidid>https://orcid.org/0000-0001-7425-7157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-08, Vol.151 (5) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5108619 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Argon Cross-sections Electric fields Electron attachment Electron swarms Electrons Extrapolation Gas mixtures Ionization coefficients Kinetic theory Mathematical analysis Tetrahydrofuran Transport properties |
title | Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20self-consistency%20of%20electron-THF%20cross%20sections%20using%20electron%20swarm%20techniques:%20Mixtures%20of%20THF%E2%80%93Ar%20and%20THF%E2%80%93N2&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=de%20Urquijo,%20J.&rft.date=2019-08-07&rft.volume=151&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5108619&rft_dat=%3Cproquest_scita%3E2268447353%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268447353&rft_id=info:pmid/&rfr_iscdi=true |