Kernel methods for detecting coherent structures in dynamical data

We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2019-12, Vol.29 (12), p.123112-123112
Hauptverfasser: Klus, Stefan, Husic, Brooke E., Mollenhauer, Mattes, Noé, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123112
container_issue 12
container_start_page 123112
container_title Chaos (Woodbury, N.Y.)
container_volume 29
creator Klus, Stefan
Husic, Brooke E.
Mollenhauer, Mattes
Noé, Frank
description We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.
doi_str_mv 10.1063/1.5100267
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5100267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324309777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgio_RhX9ACm5U6HiTmzbtUgdfOOBG1yWTh1NpmzFJhfn3dphRQdDVvYuPw-EQckxhTCHHSzrOKADLxRbZp1CUqcgLtr36M57SDGCPHITwBgCUYbZL9pAWJeac7ZPrR-M70yStiXOnQ2KdT7SJRsW6e02UmxtvupiE6HsVe29CUneJXnayrZVsEi2jPCQ7VjbBHG3uiLzc3jxP7tPp093D5GqaKiwwplqWggNjmTCiUDTPMiGZtXnJORZSZCBtobGcoc35DBWlXCNIZXjJrFQccUTO1rkL7957E2LV1kGZppGdcX2oGCKDgjEQAz39Rd9c77uh3aAYRyiFWKnztVLeheCNrRa-bqVfVhSq1bAVrTbDDvZkk9jPWqO_5deSA7hYg6DqKGPtun_T_sQfzv_AaqEtfgLgcozI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324309777</pqid></control><display><type>article</type><title>Kernel methods for detecting coherent structures in dynamical data</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</creator><creatorcontrib>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</creatorcontrib><description>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5100267</identifier><identifier>PMID: 31893642</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Correlation analysis ; Decomposition ; Empirical analysis ; Hilbert space ; Kernels ; Machine learning ; Markov processes ; Molecular dynamics ; Operators ; Particle trajectories ; Time dependence</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-12, Vol.29 (12), p.123112-123112</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</citedby><cites>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</cites><orcidid>0000-0003-4169-9324 ; 0000-0002-8020-3750 ; 0000000280203750 ; 0000000341699324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31893642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klus, Stefan</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Mollenhauer, Mattes</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><title>Kernel methods for detecting coherent structures in dynamical data</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</description><subject>Coherence</subject><subject>Correlation analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Hilbert space</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Molecular dynamics</subject><subject>Operators</subject><subject>Particle trajectories</subject><subject>Time dependence</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgio_RhX9ACm5U6HiTmzbtUgdfOOBG1yWTh1NpmzFJhfn3dphRQdDVvYuPw-EQckxhTCHHSzrOKADLxRbZp1CUqcgLtr36M57SDGCPHITwBgCUYbZL9pAWJeac7ZPrR-M70yStiXOnQ2KdT7SJRsW6e02UmxtvupiE6HsVe29CUneJXnayrZVsEi2jPCQ7VjbBHG3uiLzc3jxP7tPp093D5GqaKiwwplqWggNjmTCiUDTPMiGZtXnJORZSZCBtobGcoc35DBWlXCNIZXjJrFQccUTO1rkL7957E2LV1kGZppGdcX2oGCKDgjEQAz39Rd9c77uh3aAYRyiFWKnztVLeheCNrRa-bqVfVhSq1bAVrTbDDvZkk9jPWqO_5deSA7hYg6DqKGPtun_T_sQfzv_AaqEtfgLgcozI</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Klus, Stefan</creator><creator>Husic, Brooke E.</creator><creator>Mollenhauer, Mattes</creator><creator>Noé, Frank</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0002-8020-3750</orcidid><orcidid>https://orcid.org/0000000280203750</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid></search><sort><creationdate>201912</creationdate><title>Kernel methods for detecting coherent structures in dynamical data</title><author>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coherence</topic><topic>Correlation analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Hilbert space</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Molecular dynamics</topic><topic>Operators</topic><topic>Particle trajectories</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klus, Stefan</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Mollenhauer, Mattes</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klus, Stefan</au><au>Husic, Brooke E.</au><au>Mollenhauer, Mattes</au><au>Noé, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel methods for detecting coherent structures in dynamical data</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-12</date><risdate>2019</risdate><volume>29</volume><issue>12</issue><spage>123112</spage><epage>123112</epage><pages>123112-123112</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31893642</pmid><doi>10.1063/1.5100267</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0002-8020-3750</orcidid><orcidid>https://orcid.org/0000000280203750</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2019-12, Vol.29 (12), p.123112-123112
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_1_5100267
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coherence
Correlation analysis
Decomposition
Empirical analysis
Hilbert space
Kernels
Machine learning
Markov processes
Molecular dynamics
Operators
Particle trajectories
Time dependence
title Kernel methods for detecting coherent structures in dynamical data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20methods%20for%20detecting%20coherent%20structures%20in%20dynamical%20data&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Klus,%20Stefan&rft.date=2019-12&rft.volume=29&rft.issue=12&rft.spage=123112&rft.epage=123112&rft.pages=123112-123112&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5100267&rft_dat=%3Cproquest_scita%3E2324309777%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324309777&rft_id=info:pmid/31893642&rfr_iscdi=true