Kernel methods for detecting coherent structures in dynamical data
We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can b...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-12, Vol.29 (12), p.123112-123112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123112 |
---|---|
container_issue | 12 |
container_start_page | 123112 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 29 |
creator | Klus, Stefan Husic, Brooke E. Mollenhauer, Mattes Noé, Frank |
description | We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods. |
doi_str_mv | 10.1063/1.5100267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5100267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324309777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgio_RhX9ACm5U6HiTmzbtUgdfOOBG1yWTh1NpmzFJhfn3dphRQdDVvYuPw-EQckxhTCHHSzrOKADLxRbZp1CUqcgLtr36M57SDGCPHITwBgCUYbZL9pAWJeac7ZPrR-M70yStiXOnQ2KdT7SJRsW6e02UmxtvupiE6HsVe29CUneJXnayrZVsEi2jPCQ7VjbBHG3uiLzc3jxP7tPp093D5GqaKiwwplqWggNjmTCiUDTPMiGZtXnJORZSZCBtobGcoc35DBWlXCNIZXjJrFQccUTO1rkL7957E2LV1kGZppGdcX2oGCKDgjEQAz39Rd9c77uh3aAYRyiFWKnztVLeheCNrRa-bqVfVhSq1bAVrTbDDvZkk9jPWqO_5deSA7hYg6DqKGPtun_T_sQfzv_AaqEtfgLgcozI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324309777</pqid></control><display><type>article</type><title>Kernel methods for detecting coherent structures in dynamical data</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</creator><creatorcontrib>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</creatorcontrib><description>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5100267</identifier><identifier>PMID: 31893642</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Correlation analysis ; Decomposition ; Empirical analysis ; Hilbert space ; Kernels ; Machine learning ; Markov processes ; Molecular dynamics ; Operators ; Particle trajectories ; Time dependence</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-12, Vol.29 (12), p.123112-123112</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</citedby><cites>FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</cites><orcidid>0000-0003-4169-9324 ; 0000-0002-8020-3750 ; 0000000280203750 ; 0000000341699324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31893642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klus, Stefan</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Mollenhauer, Mattes</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><title>Kernel methods for detecting coherent structures in dynamical data</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</description><subject>Coherence</subject><subject>Correlation analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Hilbert space</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Molecular dynamics</subject><subject>Operators</subject><subject>Particle trajectories</subject><subject>Time dependence</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgio_RhX9ACm5U6HiTmzbtUgdfOOBG1yWTh1NpmzFJhfn3dphRQdDVvYuPw-EQckxhTCHHSzrOKADLxRbZp1CUqcgLtr36M57SDGCPHITwBgCUYbZL9pAWJeac7ZPrR-M70yStiXOnQ2KdT7SJRsW6e02UmxtvupiE6HsVe29CUneJXnayrZVsEi2jPCQ7VjbBHG3uiLzc3jxP7tPp093D5GqaKiwwplqWggNjmTCiUDTPMiGZtXnJORZSZCBtobGcoc35DBWlXCNIZXjJrFQccUTO1rkL7957E2LV1kGZppGdcX2oGCKDgjEQAz39Rd9c77uh3aAYRyiFWKnztVLeheCNrRa-bqVfVhSq1bAVrTbDDvZkk9jPWqO_5deSA7hYg6DqKGPtun_T_sQfzv_AaqEtfgLgcozI</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Klus, Stefan</creator><creator>Husic, Brooke E.</creator><creator>Mollenhauer, Mattes</creator><creator>Noé, Frank</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0002-8020-3750</orcidid><orcidid>https://orcid.org/0000000280203750</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid></search><sort><creationdate>201912</creationdate><title>Kernel methods for detecting coherent structures in dynamical data</title><author>Klus, Stefan ; Husic, Brooke E. ; Mollenhauer, Mattes ; Noé, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-da97402257e78c16557a2ff694438a750af8d39b3f64b3c114d30ace492fac433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coherence</topic><topic>Correlation analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Hilbert space</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Molecular dynamics</topic><topic>Operators</topic><topic>Particle trajectories</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klus, Stefan</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Mollenhauer, Mattes</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klus, Stefan</au><au>Husic, Brooke E.</au><au>Mollenhauer, Mattes</au><au>Noé, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel methods for detecting coherent structures in dynamical data</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-12</date><risdate>2019</risdate><volume>29</volume><issue>12</issue><spage>123112</spage><epage>123112</epage><pages>123112-123112</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely, the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition called coherent mode decomposition. Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31893642</pmid><doi>10.1063/1.5100267</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0002-8020-3750</orcidid><orcidid>https://orcid.org/0000000280203750</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2019-12, Vol.29 (12), p.123112-123112 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5100267 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coherence Correlation analysis Decomposition Empirical analysis Hilbert space Kernels Machine learning Markov processes Molecular dynamics Operators Particle trajectories Time dependence |
title | Kernel methods for detecting coherent structures in dynamical data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20methods%20for%20detecting%20coherent%20structures%20in%20dynamical%20data&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Klus,%20Stefan&rft.date=2019-12&rft.volume=29&rft.issue=12&rft.spage=123112&rft.epage=123112&rft.pages=123112-123112&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5100267&rft_dat=%3Cproquest_scita%3E2324309777%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324309777&rft_id=info:pmid/31893642&rfr_iscdi=true |