Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features

Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-07, Vol.115 (5)
Hauptverfasser: Zhang, X., Duff, S. M., Hilton, G. C., Lowell, P. J., Morgan, K. M., Schmidt, D. R., Ullom, J. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 115
creator Zhang, X.
Duff, S. M.
Hilton, G. C.
Lowell, P. J.
Morgan, K. M.
Schmidt, D. R.
Ullom, J. N.
description Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.
doi_str_mv 10.1063/1.5097173
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5097173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267937463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</originalsourceid><addsrcrecordid>eNqdkEtLxDAUhYMoOI4u_AcBVwod82iSdimDLxxwo-uQpomToU1qkir-ezt0wL2Ly-We-3EOHAAuMVphxOktXjFUCyzoEVhgJERBMa6OwQIhRAteM3wKzlLaTScjlC7AuA4-x9B1zn_AvDX7ib3qoA6-HXVWXhsYLEyuc5MEvcvRtQb2pm-i8iZBlSFGCPYvMJt-MFHlMU7yt8tbOKicTfSmnfg8mVozf8_BiVVdMheHvQTvD_dv66di8_r4vL7bFJoSkQtsSsqoIQ3nrMaUVQg1hNtaCK6IKAUjVuOq5G2tBa8aLZg1NSqFVczqCpV0Ca5m3yGGz9GkLHdhjH6KlIRwUVNRcjpR1zOlY0gpGiuH6HoVfyRGct-qxPLQ6sTezGzSLqvsgv8f_BXiHyiH1tJfS0OF3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267937463</pqid></control><display><type>article</type><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</creator><creatorcontrib>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</creatorcontrib><description>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5097173</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electronic devices ; Heat transfer ; Membranes ; Micromachining ; Performance degradation ; Sensors ; Silicon nitride ; Thermal conductivity</subject><ispartof>Applied physics letters, 2019-07, Vol.115 (5)</ispartof><rights>U.S. Government</rights><rights>2019 U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</citedby><cites>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</cites><orcidid>0000-0002-6597-1030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5097173$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Duff, S. M.</creatorcontrib><creatorcontrib>Hilton, G. C.</creatorcontrib><creatorcontrib>Lowell, P. J.</creatorcontrib><creatorcontrib>Morgan, K. M.</creatorcontrib><creatorcontrib>Schmidt, D. R.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><title>Applied physics letters</title><description>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</description><subject>Applied physics</subject><subject>Electronic devices</subject><subject>Heat transfer</subject><subject>Membranes</subject><subject>Micromachining</subject><subject>Performance degradation</subject><subject>Sensors</subject><subject>Silicon nitride</subject><subject>Thermal conductivity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLxDAUhYMoOI4u_AcBVwod82iSdimDLxxwo-uQpomToU1qkir-ezt0wL2Ly-We-3EOHAAuMVphxOktXjFUCyzoEVhgJERBMa6OwQIhRAteM3wKzlLaTScjlC7AuA4-x9B1zn_AvDX7ib3qoA6-HXVWXhsYLEyuc5MEvcvRtQb2pm-i8iZBlSFGCPYvMJt-MFHlMU7yt8tbOKicTfSmnfg8mVozf8_BiVVdMheHvQTvD_dv66di8_r4vL7bFJoSkQtsSsqoIQ3nrMaUVQg1hNtaCK6IKAUjVuOq5G2tBa8aLZg1NSqFVczqCpV0Ca5m3yGGz9GkLHdhjH6KlIRwUVNRcjpR1zOlY0gpGiuH6HoVfyRGct-qxPLQ6sTezGzSLqvsgv8f_BXiHyiH1tJfS0OF3A</recordid><startdate>20190729</startdate><enddate>20190729</enddate><creator>Zhang, X.</creator><creator>Duff, S. M.</creator><creator>Hilton, G. C.</creator><creator>Lowell, P. J.</creator><creator>Morgan, K. M.</creator><creator>Schmidt, D. R.</creator><creator>Ullom, J. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6597-1030</orcidid></search><sort><creationdate>20190729</creationdate><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><author>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Electronic devices</topic><topic>Heat transfer</topic><topic>Membranes</topic><topic>Micromachining</topic><topic>Performance degradation</topic><topic>Sensors</topic><topic>Silicon nitride</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Duff, S. M.</creatorcontrib><creatorcontrib>Hilton, G. C.</creatorcontrib><creatorcontrib>Lowell, P. J.</creatorcontrib><creatorcontrib>Morgan, K. M.</creatorcontrib><creatorcontrib>Schmidt, D. R.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.</au><au>Duff, S. M.</au><au>Hilton, G. C.</au><au>Lowell, P. J.</au><au>Morgan, K. M.</au><au>Schmidt, D. R.</au><au>Ullom, J. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</atitle><jtitle>Applied physics letters</jtitle><date>2019-07-29</date><risdate>2019</risdate><volume>115</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5097173</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6597-1030</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-07, Vol.115 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5097173
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Electronic devices
Heat transfer
Membranes
Micromachining
Performance degradation
Sensors
Silicon nitride
Thermal conductivity
title Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20thermal%20conductance%20of%20silicon%20nitride%20membranes%20at%20100%20mK%20temperatures%20with%20patterned%20metal%20features&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20X.&rft.date=2019-07-29&rft.volume=115&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5097173&rft_dat=%3Cproquest_scita%3E2267937463%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267937463&rft_id=info:pmid/&rfr_iscdi=true