Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features
Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing i...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-07, Vol.115 (5) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Zhang, X. Duff, S. M. Hilton, G. C. Lowell, P. J. Morgan, K. M. Schmidt, D. R. Ullom, J. N. |
description | Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded. |
doi_str_mv | 10.1063/1.5097173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5097173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267937463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</originalsourceid><addsrcrecordid>eNqdkEtLxDAUhYMoOI4u_AcBVwod82iSdimDLxxwo-uQpomToU1qkir-ezt0wL2Ly-We-3EOHAAuMVphxOktXjFUCyzoEVhgJERBMa6OwQIhRAteM3wKzlLaTScjlC7AuA4-x9B1zn_AvDX7ib3qoA6-HXVWXhsYLEyuc5MEvcvRtQb2pm-i8iZBlSFGCPYvMJt-MFHlMU7yt8tbOKicTfSmnfg8mVozf8_BiVVdMheHvQTvD_dv66di8_r4vL7bFJoSkQtsSsqoIQ3nrMaUVQg1hNtaCK6IKAUjVuOq5G2tBa8aLZg1NSqFVczqCpV0Ca5m3yGGz9GkLHdhjH6KlIRwUVNRcjpR1zOlY0gpGiuH6HoVfyRGct-qxPLQ6sTezGzSLqvsgv8f_BXiHyiH1tJfS0OF3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267937463</pqid></control><display><type>article</type><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</creator><creatorcontrib>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</creatorcontrib><description>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5097173</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electronic devices ; Heat transfer ; Membranes ; Micromachining ; Performance degradation ; Sensors ; Silicon nitride ; Thermal conductivity</subject><ispartof>Applied physics letters, 2019-07, Vol.115 (5)</ispartof><rights>U.S. Government</rights><rights>2019 U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</citedby><cites>FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</cites><orcidid>0000-0002-6597-1030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5097173$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Duff, S. M.</creatorcontrib><creatorcontrib>Hilton, G. C.</creatorcontrib><creatorcontrib>Lowell, P. J.</creatorcontrib><creatorcontrib>Morgan, K. M.</creatorcontrib><creatorcontrib>Schmidt, D. R.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><title>Applied physics letters</title><description>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</description><subject>Applied physics</subject><subject>Electronic devices</subject><subject>Heat transfer</subject><subject>Membranes</subject><subject>Micromachining</subject><subject>Performance degradation</subject><subject>Sensors</subject><subject>Silicon nitride</subject><subject>Thermal conductivity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLxDAUhYMoOI4u_AcBVwod82iSdimDLxxwo-uQpomToU1qkir-ezt0wL2Ly-We-3EOHAAuMVphxOktXjFUCyzoEVhgJERBMa6OwQIhRAteM3wKzlLaTScjlC7AuA4-x9B1zn_AvDX7ib3qoA6-HXVWXhsYLEyuc5MEvcvRtQb2pm-i8iZBlSFGCPYvMJt-MFHlMU7yt8tbOKicTfSmnfg8mVozf8_BiVVdMheHvQTvD_dv66di8_r4vL7bFJoSkQtsSsqoIQ3nrMaUVQg1hNtaCK6IKAUjVuOq5G2tBa8aLZg1NSqFVczqCpV0Ca5m3yGGz9GkLHdhjH6KlIRwUVNRcjpR1zOlY0gpGiuH6HoVfyRGct-qxPLQ6sTezGzSLqvsgv8f_BXiHyiH1tJfS0OF3A</recordid><startdate>20190729</startdate><enddate>20190729</enddate><creator>Zhang, X.</creator><creator>Duff, S. M.</creator><creator>Hilton, G. C.</creator><creator>Lowell, P. J.</creator><creator>Morgan, K. M.</creator><creator>Schmidt, D. R.</creator><creator>Ullom, J. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6597-1030</orcidid></search><sort><creationdate>20190729</creationdate><title>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</title><author>Zhang, X. ; Duff, S. M. ; Hilton, G. C. ; Lowell, P. J. ; Morgan, K. M. ; Schmidt, D. R. ; Ullom, J. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1e4353e2b6659135800b26f9776a274752fc1846d9c768bc75fe9047fa5fc8043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Electronic devices</topic><topic>Heat transfer</topic><topic>Membranes</topic><topic>Micromachining</topic><topic>Performance degradation</topic><topic>Sensors</topic><topic>Silicon nitride</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Duff, S. M.</creatorcontrib><creatorcontrib>Hilton, G. C.</creatorcontrib><creatorcontrib>Lowell, P. J.</creatorcontrib><creatorcontrib>Morgan, K. M.</creatorcontrib><creatorcontrib>Schmidt, D. R.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.</au><au>Duff, S. M.</au><au>Hilton, G. C.</au><au>Lowell, P. J.</au><au>Morgan, K. M.</au><au>Schmidt, D. R.</au><au>Ullom, J. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features</atitle><jtitle>Applied physics letters</jtitle><date>2019-07-29</date><risdate>2019</risdate><volume>115</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Freestanding micromachined membranes are often used for thermal isolation in electronic devices such as photon sensors. The degree of thermal isolation plays an important role in determining device performance, and so the ability to suppress the thermal conductance of a membrane without increasing its size or decreasing its mechanical strength is of practical importance. We present a simple method that controllably reduces the thermal conductance of silicon nitride membranes by as much as 56% at temperatures near 100 mK. The thermal conductance suppression is achieved by depositing one additional metal layer patterned into islands or rings onto the membrane surface. Complex impedance and noise measurements of superconducting transition-edge sensors fabricated using this technique show that their noise performance is not degraded.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5097173</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6597-1030</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-07, Vol.115 (5) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5097173 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Electronic devices Heat transfer Membranes Micromachining Performance degradation Sensors Silicon nitride Thermal conductivity |
title | Controlling the thermal conductance of silicon nitride membranes at 100 mK temperatures with patterned metal features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20thermal%20conductance%20of%20silicon%20nitride%20membranes%20at%20100%20mK%20temperatures%20with%20patterned%20metal%20features&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20X.&rft.date=2019-07-29&rft.volume=115&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5097173&rft_dat=%3Cproquest_scita%3E2267937463%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267937463&rft_id=info:pmid/&rfr_iscdi=true |