An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions
We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2070 |
creator | Shoemaker, Christine A. Akhtar, Taimoor |
description | We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations. |
doi_str_mv | 10.1063/1.5090014 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5090014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178819047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-d3e422c219f9cc0b15dd26ee65371acae5a9154832ede8f4d47eb69d2a422e7e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1yX5kcyzFLyh4UfAWsslsu2V3E5Ns_fgB_m63teDNywzM-84zw4vQJSUzSor0hs5yIgih2RGa0DynCS9ocYwmhIgsYVn6eorOQtgQwgTn5QR9z3usjHKx2QJ21g2tio3tk0oFMFir3jRGRcABlNdrrNqV9U1cd_h9rDgM3tvVqAdcW49Xra1Ui7uhjQ221Qb0HmtHetd87cHY1hg-HPRhp9RDr3fTcI5OatUGuDj0KXq5u31ePCTLp_vHxXyZOFaWMTEpZIxpRkUttCYVzY1hBUCRp5wqrSBXguZZmTIwUNaZyThUhTBMjWvAIZ2iq1-u8_ZtgBDlxg6-H09KRnlZUkEyPrquf11BN3H_tnS-6ZT_lJTIXc6SykPO_5m31v8ZpTN1-gMfn4JW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2178819047</pqid></control><display><type>conference_proceeding</type><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><source>AIP Journals Complete</source><creator>Shoemaker, Christine A. ; Akhtar, Taimoor</creator><contributor>Sergeyev, Yaroslav D. ; Emmerich, Michael T. M. ; Deutz, André H. ; Hille, Sander C.</contributor><creatorcontrib>Shoemaker, Christine A. ; Akhtar, Taimoor ; Sergeyev, Yaroslav D. ; Emmerich, Michael T. M. ; Deutz, André H. ; Hille, Sander C.</creatorcontrib><description>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5090014</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive algorithms ; Algorithms ; Basis functions ; Iterative methods ; Optimization ; Radial basis function ; Search algorithms</subject><ispartof>AIP conference proceedings, 2019, Vol.2070 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5090014$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23919,23920,25129,27913,27914,76143</link.rule.ids></links><search><contributor>Sergeyev, Yaroslav D.</contributor><contributor>Emmerich, Michael T. M.</contributor><contributor>Deutz, André H.</contributor><contributor>Hille, Sander C.</contributor><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Akhtar, Taimoor</creatorcontrib><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><title>AIP conference proceedings</title><description>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Basis functions</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Radial basis function</subject><subject>Search algorithms</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1yX5kcyzFLyh4UfAWsslsu2V3E5Ns_fgB_m63teDNywzM-84zw4vQJSUzSor0hs5yIgih2RGa0DynCS9ocYwmhIgsYVn6eorOQtgQwgTn5QR9z3usjHKx2QJ21g2tio3tk0oFMFir3jRGRcABlNdrrNqV9U1cd_h9rDgM3tvVqAdcW49Xra1Ui7uhjQ221Qb0HmtHetd87cHY1hg-HPRhp9RDr3fTcI5OatUGuDj0KXq5u31ePCTLp_vHxXyZOFaWMTEpZIxpRkUttCYVzY1hBUCRp5wqrSBXguZZmTIwUNaZyThUhTBMjWvAIZ2iq1-u8_ZtgBDlxg6-H09KRnlZUkEyPrquf11BN3H_tnS-6ZT_lJTIXc6SykPO_5m31v8ZpTN1-gMfn4JW</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Shoemaker, Christine A.</creator><creator>Akhtar, Taimoor</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190212</creationdate><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><author>Shoemaker, Christine A. ; Akhtar, Taimoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-d3e422c219f9cc0b15dd26ee65371acae5a9154832ede8f4d47eb69d2a422e7e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Basis functions</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Radial basis function</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Akhtar, Taimoor</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoemaker, Christine A.</au><au>Akhtar, Taimoor</au><au>Sergeyev, Yaroslav D.</au><au>Emmerich, Michael T. M.</au><au>Deutz, André H.</au><au>Hille, Sander C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</atitle><btitle>AIP conference proceedings</btitle><date>2019-02-12</date><risdate>2019</risdate><volume>2070</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5090014</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2070 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5090014 |
source | AIP Journals Complete |
subjects | Adaptive algorithms Algorithms Basis functions Iterative methods Optimization Radial basis function Search algorithms |
title | An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20adaptive%20population-based%20candidate%20search%20algorithm%20with%20surrogates%20for%20global%20multi%20objective%20optimization%20of%20expensive%20functions&rft.btitle=AIP%20conference%20proceedings&rft.au=Shoemaker,%20Christine%20A.&rft.date=2019-02-12&rft.volume=2070&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5090014&rft_dat=%3Cproquest_scita%3E2178819047%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178819047&rft_id=info:pmid/&rfr_iscdi=true |