An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions

We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shoemaker, Christine A., Akhtar, Taimoor
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2070
creator Shoemaker, Christine A.
Akhtar, Taimoor
description We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.
doi_str_mv 10.1063/1.5090014
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5090014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178819047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-d3e422c219f9cc0b15dd26ee65371acae5a9154832ede8f4d47eb69d2a422e7e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1yX5kcyzFLyh4UfAWsslsu2V3E5Ns_fgB_m63teDNywzM-84zw4vQJSUzSor0hs5yIgih2RGa0DynCS9ocYwmhIgsYVn6eorOQtgQwgTn5QR9z3usjHKx2QJ21g2tio3tk0oFMFir3jRGRcABlNdrrNqV9U1cd_h9rDgM3tvVqAdcW49Xra1Ui7uhjQ221Qb0HmtHetd87cHY1hg-HPRhp9RDr3fTcI5OatUGuDj0KXq5u31ePCTLp_vHxXyZOFaWMTEpZIxpRkUttCYVzY1hBUCRp5wqrSBXguZZmTIwUNaZyThUhTBMjWvAIZ2iq1-u8_ZtgBDlxg6-H09KRnlZUkEyPrquf11BN3H_tnS-6ZT_lJTIXc6SykPO_5m31v8ZpTN1-gMfn4JW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2178819047</pqid></control><display><type>conference_proceeding</type><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><source>AIP Journals Complete</source><creator>Shoemaker, Christine A. ; Akhtar, Taimoor</creator><contributor>Sergeyev, Yaroslav D. ; Emmerich, Michael T. M. ; Deutz, André H. ; Hille, Sander C.</contributor><creatorcontrib>Shoemaker, Christine A. ; Akhtar, Taimoor ; Sergeyev, Yaroslav D. ; Emmerich, Michael T. M. ; Deutz, André H. ; Hille, Sander C.</creatorcontrib><description>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5090014</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive algorithms ; Algorithms ; Basis functions ; Iterative methods ; Optimization ; Radial basis function ; Search algorithms</subject><ispartof>AIP conference proceedings, 2019, Vol.2070 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5090014$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23919,23920,25129,27913,27914,76143</link.rule.ids></links><search><contributor>Sergeyev, Yaroslav D.</contributor><contributor>Emmerich, Michael T. M.</contributor><contributor>Deutz, André H.</contributor><contributor>Hille, Sander C.</contributor><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Akhtar, Taimoor</creatorcontrib><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><title>AIP conference proceedings</title><description>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Basis functions</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Radial basis function</subject><subject>Search algorithms</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1yX5kcyzFLyh4UfAWsslsu2V3E5Ns_fgB_m63teDNywzM-84zw4vQJSUzSor0hs5yIgih2RGa0DynCS9ocYwmhIgsYVn6eorOQtgQwgTn5QR9z3usjHKx2QJ21g2tio3tk0oFMFir3jRGRcABlNdrrNqV9U1cd_h9rDgM3tvVqAdcW49Xra1Ui7uhjQ221Qb0HmtHetd87cHY1hg-HPRhp9RDr3fTcI5OatUGuDj0KXq5u31ePCTLp_vHxXyZOFaWMTEpZIxpRkUttCYVzY1hBUCRp5wqrSBXguZZmTIwUNaZyThUhTBMjWvAIZ2iq1-u8_ZtgBDlxg6-H09KRnlZUkEyPrquf11BN3H_tnS-6ZT_lJTIXc6SykPO_5m31v8ZpTN1-gMfn4JW</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Shoemaker, Christine A.</creator><creator>Akhtar, Taimoor</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190212</creationdate><title>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</title><author>Shoemaker, Christine A. ; Akhtar, Taimoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-d3e422c219f9cc0b15dd26ee65371acae5a9154832ede8f4d47eb69d2a422e7e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Basis functions</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Radial basis function</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Akhtar, Taimoor</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoemaker, Christine A.</au><au>Akhtar, Taimoor</au><au>Sergeyev, Yaroslav D.</au><au>Emmerich, Michael T. M.</au><au>Deutz, André H.</au><au>Hille, Sander C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions</atitle><btitle>AIP conference proceedings</btitle><date>2019-02-12</date><risdate>2019</risdate><volume>2070</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We propose a new algorithm, MOPLS, for efficient global Multi Objective (MO) optimization of expensive functions. MOPLS is an iterative population-based parallel surrogate algorithm that incorporates simultaneous local candidate search on surrogate models to select numerous evaluation points in each iteration. The novel iterative framework of MOPLS simultaneously selects new points for evaluation by using i) Local Radial Basis Function (RBF) approximation, ii) surrogate-assisted neighborhood candidate search, and iii) a Tabu mechanism for adaptively avoiding neighborhoods that do not improve the non-dominated solution set. MOPLS is more efficient than ParEGO, Borg, NSGA-II and NSGA-III with application to 11 test problems and a watershed calibration problem, on a budget of 600 functions evaluations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5090014</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2070 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5090014
source AIP Journals Complete
subjects Adaptive algorithms
Algorithms
Basis functions
Iterative methods
Optimization
Radial basis function
Search algorithms
title An adaptive population-based candidate search algorithm with surrogates for global multi objective optimization of expensive functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20adaptive%20population-based%20candidate%20search%20algorithm%20with%20surrogates%20for%20global%20multi%20objective%20optimization%20of%20expensive%20functions&rft.btitle=AIP%20conference%20proceedings&rft.au=Shoemaker,%20Christine%20A.&rft.date=2019-02-12&rft.volume=2070&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5090014&rft_dat=%3Cproquest_scita%3E2178819047%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178819047&rft_id=info:pmid/&rfr_iscdi=true