A novel approach to describe chemical environments in high-dimensional neural network potentials
A central concern of molecular dynamics simulations is the potential energy surfaces that govern atomic interactions. These hypersurfaces define the potential energy of the system and have generally been calculated using either predefined analytical formulas (classical) or quantum mechanical simulat...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-04, Vol.150 (15), p.154102-154102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154102 |
---|---|
container_issue | 15 |
container_start_page | 154102 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Kocer, Emir Mason, Jeremy K. Erturk, Hakan |
description | A central concern of molecular dynamics simulations is the potential energy surfaces that govern atomic interactions. These hypersurfaces define the potential energy of the system and have generally been calculated using either predefined analytical formulas (classical) or quantum mechanical simulations (ab initio). The former can accurately reproduce only a selection of material properties, whereas the latter is restricted to short simulation times and small systems. Machine learning potentials have recently emerged as a third approach to model atomic interactions, and are purported to offer the accuracy of ab initio simulations with the speed of classical potentials. However, the performance of machine learning potentials depends crucially on the description of a local atomic environment. A set of invariant, orthogonal, and differentiable descriptors for an atomic environment is proposed, implemented in a neural network potential for solid-state silicon, and tested in molecular dynamics simulations. Neural networks using the proposed descriptors are found to outperform ones using the Behler–Parinello and smooth overlap of atomic position descriptors in the literature. |
doi_str_mv | 10.1063/1.5086167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5086167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212721271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-96450111f2adad5c4454952086a0dd8ed8630b14dc506cd92ac02acbae9ba95f3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiruuHvwDEvCiQtdJ2_TjuCx-wYIXPdc0SW3WtqlJuuK_N-uuCoIehiHwzJB5ETomMCWQRJdkSiFLSJLuoDGBLA_SJIddNAYISZAnkIzQgbVLACBpGO-jUUQAqB8do6cZ7vRKNpj1vdGM19hpLKTlRpUS81q2irMGy26ljO5a2TmLVYdr9VwHQvm3VbrzoJOD-WzuTZsX3GvnqWKNPUR7lW_yaNsn6PH66mF-Gyzub-7ms0XAoyxy_pcxBUJIFTLBBOVxTOOchv4sBkJkUmRJBCWJBaeQcJGHjIOvksm8ZDmtogk62-z1Z7wO0rqiVZbLpmGd1IMtwpCE6bqIp6e_6FIPxl-xVpCnNKZp5tX5RnGjrTWyKnqjWmbeCwLFOvaCFNvYvT3ZbhzKVopv-ZWzBxcbYLlyzPnM_t32J15p8wOLXlTRB10LmQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209754578</pqid></control><display><type>article</type><title>A novel approach to describe chemical environments in high-dimensional neural network potentials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kocer, Emir ; Mason, Jeremy K. ; Erturk, Hakan</creator><creatorcontrib>Kocer, Emir ; Mason, Jeremy K. ; Erturk, Hakan</creatorcontrib><description>A central concern of molecular dynamics simulations is the potential energy surfaces that govern atomic interactions. These hypersurfaces define the potential energy of the system and have generally been calculated using either predefined analytical formulas (classical) or quantum mechanical simulations (ab initio). The former can accurately reproduce only a selection of material properties, whereas the latter is restricted to short simulation times and small systems. Machine learning potentials have recently emerged as a third approach to model atomic interactions, and are purported to offer the accuracy of ab initio simulations with the speed of classical potentials. However, the performance of machine learning potentials depends crucially on the description of a local atomic environment. A set of invariant, orthogonal, and differentiable descriptors for an atomic environment is proposed, implemented in a neural network potential for solid-state silicon, and tested in molecular dynamics simulations. Neural networks using the proposed descriptors are found to outperform ones using the Behler–Parinello and smooth overlap of atomic position descriptors in the literature.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5086167</identifier><identifier>PMID: 31005106</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial intelligence ; Atomic interactions ; Computer simulation ; Hyperspaces ; Machine learning ; Material properties ; Molecular dynamics ; Neural networks ; Organic chemistry ; Potential energy ; Quantum mechanics ; Simulation</subject><ispartof>The Journal of chemical physics, 2019-04, Vol.150 (15), p.154102-154102</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-96450111f2adad5c4454952086a0dd8ed8630b14dc506cd92ac02acbae9ba95f3</citedby><cites>FETCH-LOGICAL-c383t-96450111f2adad5c4454952086a0dd8ed8630b14dc506cd92ac02acbae9ba95f3</cites><orcidid>0000-0003-4207-8220 ; 0000-0001-5564-3845 ; 0000-0002-0425-9816 ; 0000000204259816 ; 0000000155643845 ; 0000000342078220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5086167$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31005106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocer, Emir</creatorcontrib><creatorcontrib>Mason, Jeremy K.</creatorcontrib><creatorcontrib>Erturk, Hakan</creatorcontrib><title>A novel approach to describe chemical environments in high-dimensional neural network potentials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A central concern of molecular dynamics simulations is the potential energy surfaces that govern atomic interactions. These hypersurfaces define the potential energy of the system and have generally been calculated using either predefined analytical formulas (classical) or quantum mechanical simulations (ab initio). The former can accurately reproduce only a selection of material properties, whereas the latter is restricted to short simulation times and small systems. Machine learning potentials have recently emerged as a third approach to model atomic interactions, and are purported to offer the accuracy of ab initio simulations with the speed of classical potentials. However, the performance of machine learning potentials depends crucially on the description of a local atomic environment. A set of invariant, orthogonal, and differentiable descriptors for an atomic environment is proposed, implemented in a neural network potential for solid-state silicon, and tested in molecular dynamics simulations. Neural networks using the proposed descriptors are found to outperform ones using the Behler–Parinello and smooth overlap of atomic position descriptors in the literature.</description><subject>Artificial intelligence</subject><subject>Atomic interactions</subject><subject>Computer simulation</subject><subject>Hyperspaces</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Simulation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiruuHvwDEvCiQtdJ2_TjuCx-wYIXPdc0SW3WtqlJuuK_N-uuCoIehiHwzJB5ETomMCWQRJdkSiFLSJLuoDGBLA_SJIddNAYISZAnkIzQgbVLACBpGO-jUUQAqB8do6cZ7vRKNpj1vdGM19hpLKTlRpUS81q2irMGy26ljO5a2TmLVYdr9VwHQvm3VbrzoJOD-WzuTZsX3GvnqWKNPUR7lW_yaNsn6PH66mF-Gyzub-7ms0XAoyxy_pcxBUJIFTLBBOVxTOOchv4sBkJkUmRJBCWJBaeQcJGHjIOvksm8ZDmtogk62-z1Z7wO0rqiVZbLpmGd1IMtwpCE6bqIp6e_6FIPxl-xVpCnNKZp5tX5RnGjrTWyKnqjWmbeCwLFOvaCFNvYvT3ZbhzKVopv-ZWzBxcbYLlyzPnM_t32J15p8wOLXlTRB10LmQ0</recordid><startdate>20190421</startdate><enddate>20190421</enddate><creator>Kocer, Emir</creator><creator>Mason, Jeremy K.</creator><creator>Erturk, Hakan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4207-8220</orcidid><orcidid>https://orcid.org/0000-0001-5564-3845</orcidid><orcidid>https://orcid.org/0000-0002-0425-9816</orcidid><orcidid>https://orcid.org/0000000204259816</orcidid><orcidid>https://orcid.org/0000000155643845</orcidid><orcidid>https://orcid.org/0000000342078220</orcidid></search><sort><creationdate>20190421</creationdate><title>A novel approach to describe chemical environments in high-dimensional neural network potentials</title><author>Kocer, Emir ; Mason, Jeremy K. ; Erturk, Hakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-96450111f2adad5c4454952086a0dd8ed8630b14dc506cd92ac02acbae9ba95f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Atomic interactions</topic><topic>Computer simulation</topic><topic>Hyperspaces</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocer, Emir</creatorcontrib><creatorcontrib>Mason, Jeremy K.</creatorcontrib><creatorcontrib>Erturk, Hakan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocer, Emir</au><au>Mason, Jeremy K.</au><au>Erturk, Hakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach to describe chemical environments in high-dimensional neural network potentials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-04-21</date><risdate>2019</risdate><volume>150</volume><issue>15</issue><spage>154102</spage><epage>154102</epage><pages>154102-154102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A central concern of molecular dynamics simulations is the potential energy surfaces that govern atomic interactions. These hypersurfaces define the potential energy of the system and have generally been calculated using either predefined analytical formulas (classical) or quantum mechanical simulations (ab initio). The former can accurately reproduce only a selection of material properties, whereas the latter is restricted to short simulation times and small systems. Machine learning potentials have recently emerged as a third approach to model atomic interactions, and are purported to offer the accuracy of ab initio simulations with the speed of classical potentials. However, the performance of machine learning potentials depends crucially on the description of a local atomic environment. A set of invariant, orthogonal, and differentiable descriptors for an atomic environment is proposed, implemented in a neural network potential for solid-state silicon, and tested in molecular dynamics simulations. Neural networks using the proposed descriptors are found to outperform ones using the Behler–Parinello and smooth overlap of atomic position descriptors in the literature.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31005106</pmid><doi>10.1063/1.5086167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4207-8220</orcidid><orcidid>https://orcid.org/0000-0001-5564-3845</orcidid><orcidid>https://orcid.org/0000-0002-0425-9816</orcidid><orcidid>https://orcid.org/0000000204259816</orcidid><orcidid>https://orcid.org/0000000155643845</orcidid><orcidid>https://orcid.org/0000000342078220</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-04, Vol.150 (15), p.154102-154102 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5086167 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Artificial intelligence Atomic interactions Computer simulation Hyperspaces Machine learning Material properties Molecular dynamics Neural networks Organic chemistry Potential energy Quantum mechanics Simulation |
title | A novel approach to describe chemical environments in high-dimensional neural network potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20to%20describe%20chemical%20environments%20in%20high-dimensional%20neural%20network%20potentials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kocer,%20Emir&rft.date=2019-04-21&rft.volume=150&rft.issue=15&rft.spage=154102&rft.epage=154102&rft.pages=154102-154102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5086167&rft_dat=%3Cproquest_scita%3E2212721271%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209754578&rft_id=info:pmid/31005106&rfr_iscdi=true |