Particle motion driven by non-uniform thermodynamic forces
We present a complete reciprocal description of particle motion inside multi-component fluids that extends the conventional Onsager formulation of non-equilibrium transport to systems where the thermodynamic forces are non-uniform on the colloidal scale. Based on the dynamic length and time scale se...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-04, Vol.150 (14), p.144704-144704 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144704 |
---|---|
container_issue | 14 |
container_start_page | 144704 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Burelbach, Jérôme |
description | We present a complete reciprocal description of particle motion inside multi-component fluids that extends the conventional Onsager formulation of non-equilibrium transport to systems where the thermodynamic forces are non-uniform on the colloidal scale. Based on the dynamic length and time scale separation in suspensions, the particle flux is shown to be related to the volume-averaged coupling between the Stokes flow tensor and the thermodynamic force density acting on the fluid. The flux is then expressed in terms of thermodynamic quantities that can be computed from the interfacial properties and equation of state of the colloids. Our results correctly describe diffusion and sedimentation and suggest that force-free phoretic motion can occur even in the absence of interfacial interactions, provided that the thermodynamic gradients are non-uniform at the colloidal surface. In particular, we derive an explicit hydrodynamic form for the phoretic force resulting from these non-uniform gradients. The form is validated by the recovery of the Henry function for electrophoresis and the Ruckenstein term for thermophoresis. |
doi_str_mv | 10.1063/1.5085739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5085739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210009528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c16313ec61cff008ce8d747c0dc10efb6601e13709b8e15b8b5806e22f1fb2be3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDqz22x2vUnxCwp60HNINrOY0mTrblLovzelVUHQ08Dw8DLzMnaKMEaQ4hrHCagkFXqPDRGUjlOpYZ8NATjGWoIcsKMQ5gCAKZ8csoEArZDLdMhuXnLfVmZBUe3ayjVR6asVNVGxjhrXxF1TWefrqH0nX7ty3eR1ZaJ-ZSgcswObLwKd7OaIvd3fvU4f49nzw9P0dhYboUQbG5QCBRmJxloAZUiV6SQ1UBoEsoWUgIQiBV0owqRQRaJAEucWbcELEiN2sc1devfRUWizugqGFou8IdeFjHPsP9MJVz09_0XnrvNNf12vIE2kTiT06nKrjHcheLLZ0ld17tcZQrYpNMNsV2hvz3aJXVFT-S2_GuzB1RYEU7X5psJ_0_7EK-d_YLYsrfgEzBiK2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207569560</pqid></control><display><type>article</type><title>Particle motion driven by non-uniform thermodynamic forces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Burelbach, Jérôme</creator><creatorcontrib>Burelbach, Jérôme</creatorcontrib><description>We present a complete reciprocal description of particle motion inside multi-component fluids that extends the conventional Onsager formulation of non-equilibrium transport to systems where the thermodynamic forces are non-uniform on the colloidal scale. Based on the dynamic length and time scale separation in suspensions, the particle flux is shown to be related to the volume-averaged coupling between the Stokes flow tensor and the thermodynamic force density acting on the fluid. The flux is then expressed in terms of thermodynamic quantities that can be computed from the interfacial properties and equation of state of the colloids. Our results correctly describe diffusion and sedimentation and suggest that force-free phoretic motion can occur even in the absence of interfacial interactions, provided that the thermodynamic gradients are non-uniform at the colloidal surface. In particular, we derive an explicit hydrodynamic form for the phoretic force resulting from these non-uniform gradients. The form is validated by the recovery of the Henry function for electrophoresis and the Ruckenstein term for thermophoresis.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5085739</identifier><identifier>PMID: 30981267</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Colloids ; Computational fluid dynamics ; Electrophoresis ; Equations of state ; Interfacial properties ; Particle motion ; Physics ; Sedimentation ; Stokes flow ; Tensors ; Thermophoresis</subject><ispartof>The Journal of chemical physics, 2019-04, Vol.150 (14), p.144704-144704</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c16313ec61cff008ce8d747c0dc10efb6601e13709b8e15b8b5806e22f1fb2be3</citedby><cites>FETCH-LOGICAL-c383t-c16313ec61cff008ce8d747c0dc10efb6601e13709b8e15b8b5806e22f1fb2be3</cites><orcidid>0000-0002-7509-9637 ; 0000000275099637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5085739$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30981267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burelbach, Jérôme</creatorcontrib><title>Particle motion driven by non-uniform thermodynamic forces</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a complete reciprocal description of particle motion inside multi-component fluids that extends the conventional Onsager formulation of non-equilibrium transport to systems where the thermodynamic forces are non-uniform on the colloidal scale. Based on the dynamic length and time scale separation in suspensions, the particle flux is shown to be related to the volume-averaged coupling between the Stokes flow tensor and the thermodynamic force density acting on the fluid. The flux is then expressed in terms of thermodynamic quantities that can be computed from the interfacial properties and equation of state of the colloids. Our results correctly describe diffusion and sedimentation and suggest that force-free phoretic motion can occur even in the absence of interfacial interactions, provided that the thermodynamic gradients are non-uniform at the colloidal surface. In particular, we derive an explicit hydrodynamic form for the phoretic force resulting from these non-uniform gradients. The form is validated by the recovery of the Henry function for electrophoresis and the Ruckenstein term for thermophoresis.</description><subject>Colloids</subject><subject>Computational fluid dynamics</subject><subject>Electrophoresis</subject><subject>Equations of state</subject><subject>Interfacial properties</subject><subject>Particle motion</subject><subject>Physics</subject><subject>Sedimentation</subject><subject>Stokes flow</subject><subject>Tensors</subject><subject>Thermophoresis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDqz22x2vUnxCwp60HNINrOY0mTrblLovzelVUHQ08Dw8DLzMnaKMEaQ4hrHCagkFXqPDRGUjlOpYZ8NATjGWoIcsKMQ5gCAKZ8csoEArZDLdMhuXnLfVmZBUe3ayjVR6asVNVGxjhrXxF1TWefrqH0nX7ty3eR1ZaJ-ZSgcswObLwKd7OaIvd3fvU4f49nzw9P0dhYboUQbG5QCBRmJxloAZUiV6SQ1UBoEsoWUgIQiBV0owqRQRaJAEucWbcELEiN2sc1devfRUWizugqGFou8IdeFjHPsP9MJVz09_0XnrvNNf12vIE2kTiT06nKrjHcheLLZ0ld17tcZQrYpNMNsV2hvz3aJXVFT-S2_GuzB1RYEU7X5psJ_0_7EK-d_YLYsrfgEzBiK2Q</recordid><startdate>20190414</startdate><enddate>20190414</enddate><creator>Burelbach, Jérôme</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7509-9637</orcidid><orcidid>https://orcid.org/0000000275099637</orcidid></search><sort><creationdate>20190414</creationdate><title>Particle motion driven by non-uniform thermodynamic forces</title><author>Burelbach, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c16313ec61cff008ce8d747c0dc10efb6601e13709b8e15b8b5806e22f1fb2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Colloids</topic><topic>Computational fluid dynamics</topic><topic>Electrophoresis</topic><topic>Equations of state</topic><topic>Interfacial properties</topic><topic>Particle motion</topic><topic>Physics</topic><topic>Sedimentation</topic><topic>Stokes flow</topic><topic>Tensors</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burelbach, Jérôme</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burelbach, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle motion driven by non-uniform thermodynamic forces</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-04-14</date><risdate>2019</risdate><volume>150</volume><issue>14</issue><spage>144704</spage><epage>144704</epage><pages>144704-144704</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present a complete reciprocal description of particle motion inside multi-component fluids that extends the conventional Onsager formulation of non-equilibrium transport to systems where the thermodynamic forces are non-uniform on the colloidal scale. Based on the dynamic length and time scale separation in suspensions, the particle flux is shown to be related to the volume-averaged coupling between the Stokes flow tensor and the thermodynamic force density acting on the fluid. The flux is then expressed in terms of thermodynamic quantities that can be computed from the interfacial properties and equation of state of the colloids. Our results correctly describe diffusion and sedimentation and suggest that force-free phoretic motion can occur even in the absence of interfacial interactions, provided that the thermodynamic gradients are non-uniform at the colloidal surface. In particular, we derive an explicit hydrodynamic form for the phoretic force resulting from these non-uniform gradients. The form is validated by the recovery of the Henry function for electrophoresis and the Ruckenstein term for thermophoresis.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30981267</pmid><doi>10.1063/1.5085739</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7509-9637</orcidid><orcidid>https://orcid.org/0000000275099637</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-04, Vol.150 (14), p.144704-144704 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5085739 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Colloids Computational fluid dynamics Electrophoresis Equations of state Interfacial properties Particle motion Physics Sedimentation Stokes flow Tensors Thermophoresis |
title | Particle motion driven by non-uniform thermodynamic forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20motion%20driven%20by%20non-uniform%20thermodynamic%20forces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Burelbach,%20J%C3%A9r%C3%B4me&rft.date=2019-04-14&rft.volume=150&rft.issue=14&rft.spage=144704&rft.epage=144704&rft.pages=144704-144704&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5085739&rft_dat=%3Cproquest_scita%3E2210009528%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207569560&rft_id=info:pmid/30981267&rfr_iscdi=true |