The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynami...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2019-05, Vol.26 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 26 |
creator | Di Stefano, C. A. Doss, F. W. Rasmus, A. M. Flippo, K. A. Haines, B. M. |
description | In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work. |
doi_str_mv | 10.1063/1.5085332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5085332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231619015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c88a1a3145b911400101b3d57966c5527ba00e1c493e7eae1e2e42cb455e28173</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAiCur04DcIelKo5m2atD2Kzj8gCDLBW0jTt1ukS2aSje3b27KhB8FTnsMvb_I-SXIG9BqoYDdwzWnJGcv2kiOgZZUWosj3h1zQVIj84zA5DuGTUpoLXh4l7WSGZO4a7IydEteSPqkNNqmzASN5U5sOzXSWTvrgPFG2IdErG0w0zpLoyNysh5vGkk4F9GnjzQoteRrfE1wv0Js52hhOkoNWdQFPd-coeX8YT-6e0pfXx-e725dUs7KKqS5LBYpBzusKIKcUKNSs4UUlhOY8K2pFKYLOK4YFKgTMMM90nXOOWQkFGyXn27kuRCODNhH1TDtrUUcJPOuLET262KKFd19LDFF-uqW3_b9kljEQUFHgvbrcKu1dCB5bueiXUX4jgcqhawly13Vvr7Z2eFEN1fzglfO_UC6a9j_8d_I3Br-L1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231619015</pqid></control><display><type>article</type><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Di Stefano, C. A. ; Doss, F. W. ; Rasmus, A. M. ; Flippo, K. A. ; Haines, B. M.</creator><creatorcontrib>Di Stefano, C. A. ; Doss, F. W. ; Rasmus, A. M. ; Flippo, K. A. ; Haines, B. M.</creatorcontrib><description>In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5085332</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Deceleration ; Dynamic stability ; Fluid flow ; Hydrodynamics ; Lasers ; Modelling ; Plasma physics</subject><ispartof>Physics of plasmas, 2019-05, Vol.26 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c88a1a3145b911400101b3d57966c5527ba00e1c493e7eae1e2e42cb455e28173</citedby><cites>FETCH-LOGICAL-c389t-c88a1a3145b911400101b3d57966c5527ba00e1c493e7eae1e2e42cb455e28173</cites><orcidid>0000-0001-9300-1034 ; 0000-0002-4752-5141 ; 0000-0002-3889-7074 ; 0000-0003-0729-6257 ; 0000-0001-6166-3519 ; 0000000193001034 ; 0000000161663519 ; 0000000238897074 ; 0000000307296257 ; 0000000247525141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5085332$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1523326$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Stefano, C. A.</creatorcontrib><creatorcontrib>Doss, F. W.</creatorcontrib><creatorcontrib>Rasmus, A. M.</creatorcontrib><creatorcontrib>Flippo, K. A.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><title>Physics of plasmas</title><description>In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deceleration</subject><subject>Dynamic stability</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lasers</subject><subject>Modelling</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAiCur04DcIelKo5m2atD2Kzj8gCDLBW0jTt1ukS2aSje3b27KhB8FTnsMvb_I-SXIG9BqoYDdwzWnJGcv2kiOgZZUWosj3h1zQVIj84zA5DuGTUpoLXh4l7WSGZO4a7IydEteSPqkNNqmzASN5U5sOzXSWTvrgPFG2IdErG0w0zpLoyNysh5vGkk4F9GnjzQoteRrfE1wv0Js52hhOkoNWdQFPd-coeX8YT-6e0pfXx-e725dUs7KKqS5LBYpBzusKIKcUKNSs4UUlhOY8K2pFKYLOK4YFKgTMMM90nXOOWQkFGyXn27kuRCODNhH1TDtrUUcJPOuLET262KKFd19LDFF-uqW3_b9kljEQUFHgvbrcKu1dCB5bueiXUX4jgcqhawly13Vvr7Z2eFEN1fzglfO_UC6a9j_8d_I3Br-L1Q</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Di Stefano, C. A.</creator><creator>Doss, F. W.</creator><creator>Rasmus, A. M.</creator><creator>Flippo, K. A.</creator><creator>Haines, B. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9300-1034</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0003-0729-6257</orcidid><orcidid>https://orcid.org/0000-0001-6166-3519</orcidid><orcidid>https://orcid.org/0000000193001034</orcidid><orcidid>https://orcid.org/0000000161663519</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000307296257</orcidid><orcidid>https://orcid.org/0000000247525141</orcidid></search><sort><creationdate>201905</creationdate><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><author>Di Stefano, C. A. ; Doss, F. W. ; Rasmus, A. M. ; Flippo, K. A. ; Haines, B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c88a1a3145b911400101b3d57966c5527ba00e1c493e7eae1e2e42cb455e28173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deceleration</topic><topic>Dynamic stability</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lasers</topic><topic>Modelling</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, C. A.</creatorcontrib><creatorcontrib>Doss, F. W.</creatorcontrib><creatorcontrib>Rasmus, A. M.</creatorcontrib><creatorcontrib>Flippo, K. A.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, C. A.</au><au>Doss, F. W.</au><au>Rasmus, A. M.</au><au>Flippo, K. A.</au><au>Haines, B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</atitle><jtitle>Physics of plasmas</jtitle><date>2019-05</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5085332</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9300-1034</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0003-0729-6257</orcidid><orcidid>https://orcid.org/0000-0001-6166-3519</orcidid><orcidid>https://orcid.org/0000000193001034</orcidid><orcidid>https://orcid.org/0000000161663519</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000307296257</orcidid><orcidid>https://orcid.org/0000000247525141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2019-05, Vol.26 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5085332 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Computer simulation Deceleration Dynamic stability Fluid flow Hydrodynamics Lasers Modelling Plasma physics |
title | The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20modeling%20of%20delayed-onset%20Rayleigh-Taylor%20and%20transition%20to%20mixing%20in%20laser-driven%20HED%20experiments&rft.jtitle=Physics%20of%20plasmas&rft.au=Di%20Stefano,%20C.%20A.&rft.date=2019-05&rft.volume=26&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5085332&rft_dat=%3Cproquest_scita%3E2231619015%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231619015&rft_id=info:pmid/&rfr_iscdi=true |