On the paranormed binomial sequence spaces
In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2037 |
creator | Demiriz, Serkan Ellidokuzoğlu, Hacer Bilgin |
description | In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ. |
doi_str_mv | 10.1063/1.5078461 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5078461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133033124</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-d096b8911618a83a0aa43f5a4250a6143277863b42f92f404aa6080cfae7078a3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoWKsHv0HB26DzfZM0TY8ydAqDXRS8hbdtgh1rU5NO8Ntb2cCbp-fy4_nH2C3CEkGJe1wWUGqp8IwlWBSYlwrVOUsAKplzKd4v2VWMOwBelaVO2GI7ZNOHzUYKNPjQ2zaru8H3He2zaD8PdmhsFkdqbLxmF4720d6cNGVvT4-vq-d8s12_rB42-ci1nvIWKlXrClGhJi0IiKRwBUleACmUgs_BStSSu4o7CZJIgYbGkS3n6iRSdnf0HYOfC8TJ7PwhDHOk4SgECIHzkJQtjlRsuommzg9mDF1P4dsgmN8vDJrTF__BXz78gWZsnfgBkRxc2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2133033124</pqid></control><display><type>conference_proceeding</type><title>On the paranormed binomial sequence spaces</title><source>AIP Journals Complete</source><creator>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin</creator><contributor>Tosun, Murat</contributor><creatorcontrib>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin ; Tosun, Murat</creatorcontrib><description>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5078461</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><ispartof>AIP conference proceedings, 2018, Vol.2037 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5078461$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Tosun, Murat</contributor><creatorcontrib>Demiriz, Serkan</creatorcontrib><creatorcontrib>Ellidokuzoğlu, Hacer Bilgin</creatorcontrib><title>On the paranormed binomial sequence spaces</title><title>AIP conference proceedings</title><description>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LwzAYxoMoWKsHv0HB26DzfZM0TY8ydAqDXRS8hbdtgh1rU5NO8Ntb2cCbp-fy4_nH2C3CEkGJe1wWUGqp8IwlWBSYlwrVOUsAKplzKd4v2VWMOwBelaVO2GI7ZNOHzUYKNPjQ2zaru8H3He2zaD8PdmhsFkdqbLxmF4720d6cNGVvT4-vq-d8s12_rB42-ci1nvIWKlXrClGhJi0IiKRwBUleACmUgs_BStSSu4o7CZJIgYbGkS3n6iRSdnf0HYOfC8TJ7PwhDHOk4SgECIHzkJQtjlRsuommzg9mDF1P4dsgmN8vDJrTF__BXz78gWZsnfgBkRxc2A</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Demiriz, Serkan</creator><creator>Ellidokuzoğlu, Hacer Bilgin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181114</creationdate><title>On the paranormed binomial sequence spaces</title><author>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-d096b8911618a83a0aa43f5a4250a6143277863b42f92f404aa6080cfae7078a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demiriz, Serkan</creatorcontrib><creatorcontrib>Ellidokuzoğlu, Hacer Bilgin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demiriz, Serkan</au><au>Ellidokuzoğlu, Hacer Bilgin</au><au>Tosun, Murat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the paranormed binomial sequence spaces</atitle><btitle>AIP conference proceedings</btitle><date>2018-11-14</date><risdate>2018</risdate><volume>2037</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5078461</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.2037 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5078461 |
source | AIP Journals Complete |
title | On the paranormed binomial sequence spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20paranormed%20binomial%20sequence%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Demiriz,%20Serkan&rft.date=2018-11-14&rft.volume=2037&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5078461&rft_dat=%3Cproquest_scita%3E2133033124%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133033124&rft_id=info:pmid/&rfr_iscdi=true |