On the paranormed binomial sequence spaces

In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Demiriz, Serkan, Ellidokuzoğlu, Hacer Bilgin
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2037
creator Demiriz, Serkan
Ellidokuzoğlu, Hacer Bilgin
description In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.
doi_str_mv 10.1063/1.5078461
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5078461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133033124</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-d096b8911618a83a0aa43f5a4250a6143277863b42f92f404aa6080cfae7078a3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoWKsHv0HB26DzfZM0TY8ydAqDXRS8hbdtgh1rU5NO8Ntb2cCbp-fy4_nH2C3CEkGJe1wWUGqp8IwlWBSYlwrVOUsAKplzKd4v2VWMOwBelaVO2GI7ZNOHzUYKNPjQ2zaru8H3He2zaD8PdmhsFkdqbLxmF4720d6cNGVvT4-vq-d8s12_rB42-ci1nvIWKlXrClGhJi0IiKRwBUleACmUgs_BStSSu4o7CZJIgYbGkS3n6iRSdnf0HYOfC8TJ7PwhDHOk4SgECIHzkJQtjlRsuommzg9mDF1P4dsgmN8vDJrTF__BXz78gWZsnfgBkRxc2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2133033124</pqid></control><display><type>conference_proceeding</type><title>On the paranormed binomial sequence spaces</title><source>AIP Journals Complete</source><creator>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin</creator><contributor>Tosun, Murat</contributor><creatorcontrib>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin ; Tosun, Murat</creatorcontrib><description>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5078461</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><ispartof>AIP conference proceedings, 2018, Vol.2037 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5078461$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Tosun, Murat</contributor><creatorcontrib>Demiriz, Serkan</creatorcontrib><creatorcontrib>Ellidokuzoğlu, Hacer Bilgin</creatorcontrib><title>On the paranormed binomial sequence spaces</title><title>AIP conference proceedings</title><description>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LwzAYxoMoWKsHv0HB26DzfZM0TY8ydAqDXRS8hbdtgh1rU5NO8Ntb2cCbp-fy4_nH2C3CEkGJe1wWUGqp8IwlWBSYlwrVOUsAKplzKd4v2VWMOwBelaVO2GI7ZNOHzUYKNPjQ2zaru8H3He2zaD8PdmhsFkdqbLxmF4720d6cNGVvT4-vq-d8s12_rB42-ci1nvIWKlXrClGhJi0IiKRwBUleACmUgs_BStSSu4o7CZJIgYbGkS3n6iRSdnf0HYOfC8TJ7PwhDHOk4SgECIHzkJQtjlRsuommzg9mDF1P4dsgmN8vDJrTF__BXz78gWZsnfgBkRxc2A</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Demiriz, Serkan</creator><creator>Ellidokuzoğlu, Hacer Bilgin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181114</creationdate><title>On the paranormed binomial sequence spaces</title><author>Demiriz, Serkan ; Ellidokuzoğlu, Hacer Bilgin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-d096b8911618a83a0aa43f5a4250a6143277863b42f92f404aa6080cfae7078a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demiriz, Serkan</creatorcontrib><creatorcontrib>Ellidokuzoğlu, Hacer Bilgin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demiriz, Serkan</au><au>Ellidokuzoğlu, Hacer Bilgin</au><au>Tosun, Murat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the paranormed binomial sequence spaces</atitle><btitle>AIP conference proceedings</btitle><date>2018-11-14</date><risdate>2018</risdate><volume>2037</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper the sequence spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) which are the generalization of the classical Maddox’s paranormed sequence spaces have been introduced and proved that the spaces b0r,s(p),bcr,s(p),b∞r,s(p) and br,s(p) are linearly iso-morphic to spaces c0(p), c(p), ℓ∞(p) and ℓ(p), respectively. Besides this, the α-, β- and γ-duals of the spaces b0r,s(p),bcr,s, and br,s(p) have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices (b0r,s(p) : µ), (bcr,s(p) : µ) and (br,s(p) : µ) have been characterized, where µ is one of the sequence spaces ℓ∞, c and c0 and derives the other characterizations for the special cases of µ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5078461</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.2037 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5078461
source AIP Journals Complete
title On the paranormed binomial sequence spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20paranormed%20binomial%20sequence%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Demiriz,%20Serkan&rft.date=2018-11-14&rft.volume=2037&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5078461&rft_dat=%3Cproquest_scita%3E2133033124%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133033124&rft_id=info:pmid/&rfr_iscdi=true