A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass

Solar energy is the most abundant renewable energy source on earth and its contribution in the energy mix is growing fast, especially for electricity production via photovoltaic panels and to a lesser extent for concentrated solar energy. However, concentrated solar energy can also provide high temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodat, Sylvain, Bellouard, Quentin, Abanades, Stéphane, Chuayboon, Srirat, Frayssines, Pierre-Eric, Ravel, Serge
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2033
creator Rodat, Sylvain
Bellouard, Quentin
Abanades, Stéphane
Chuayboon, Srirat
Frayssines, Pierre-Eric
Ravel, Serge
description Solar energy is the most abundant renewable energy source on earth and its contribution in the energy mix is growing fast, especially for electricity production via photovoltaic panels and to a lesser extent for concentrated solar energy. However, concentrated solar energy can also provide high temperature heat for process applications. Solar fuels are envisioned as alternative fuels that would enable long term storage and transport of solar energy. Solar thermochemical gasification of lignocellulosic biomass has been investigated in this objective. The use of concentrated solar energy as the external heat source for the high-temperature reaction allows producing high-value syngas with both higher energy conversion efficiency and reduced cost of gas cleaning and separation, while saving biomass feedstock. A 1.5 kWth solar reactor was successfully tested for continuous solar driven gasification of millimetric wood particles under real solar irradiation using a parabolic dish concentrator. Investigated temperatures ranged from 1100°C to 1400°C. The influence of temperature, oxidizing agent nature (H2O or CO2), heating configuration (direct or indirect irradiation), on gas yield and energy conversion efficiency was investigated. The syngas yield drastically increased with the temperature for both steam and CO2 gasification, while increasing the steam content favored H2 production over CO. Continuous biomass conversion was demonstrated with a global solar-to-fuel energy conversion efficiency of 26% at 1300°C and a cold gas efficiency as high as 1.16, confirming efficient solar up-grade of the feedstock energy content.
doi_str_mv 10.1063/1.5067146
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5067146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131527905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-139b3629f81bb71631767b30338cd4dc139ece658cdba3ee45380fd92ec0198d3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOKcH_4OAJ4XOvKZN2-MY6oSBFwVvIU3TNaNtZtJWdvYfN1vHvHl4vF-f7-M9HkK3QGZAGH2EWUxYAhE7QxOIYwgSBuwcTQjJoiCM6OclunJuQ0iYJUk6QT9z3JpB1bjS6yroVLNVVnS9VdiZWlgsK9VoKWpslZCdsbj05nbtWji8taboZadNi0trmlERFFYPqsVdpWxjTnLP69JHB9qU-NuYAufaNMK5a3RRitqpm6Ofoo_np_fFMli9vbwu5qtAUhZ2AdAs90FWppDnCTAKCUtySihNZREV0veVVCz2WS6oUlFMU1IWWagkgSwt6BTdj3MrUfOt1Y2wO26E5sv5iu9rJAQSRSQbwLN3I-uP_OqV6_jG9Lb16_EQKMRhkpHYUw8j5aTuDred5g7GcuDHZ_BtUf4HA-H77_0J6C-xZ42L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2131527905</pqid></control><display><type>conference_proceeding</type><title>A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass</title><source>AIP Journals Complete</source><creator>Rodat, Sylvain ; Bellouard, Quentin ; Abanades, Stéphane ; Chuayboon, Srirat ; Frayssines, Pierre-Eric ; Ravel, Serge</creator><contributor>Mancilla, Rodrigo ; Richter, Christoph</contributor><creatorcontrib>Rodat, Sylvain ; Bellouard, Quentin ; Abanades, Stéphane ; Chuayboon, Srirat ; Frayssines, Pierre-Eric ; Ravel, Serge ; Mancilla, Rodrigo ; Richter, Christoph</creatorcontrib><description>Solar energy is the most abundant renewable energy source on earth and its contribution in the energy mix is growing fast, especially for electricity production via photovoltaic panels and to a lesser extent for concentrated solar energy. However, concentrated solar energy can also provide high temperature heat for process applications. Solar fuels are envisioned as alternative fuels that would enable long term storage and transport of solar energy. Solar thermochemical gasification of lignocellulosic biomass has been investigated in this objective. The use of concentrated solar energy as the external heat source for the high-temperature reaction allows producing high-value syngas with both higher energy conversion efficiency and reduced cost of gas cleaning and separation, while saving biomass feedstock. A 1.5 kWth solar reactor was successfully tested for continuous solar driven gasification of millimetric wood particles under real solar irradiation using a parabolic dish concentrator. Investigated temperatures ranged from 1100°C to 1400°C. The influence of temperature, oxidizing agent nature (H2O or CO2), heating configuration (direct or indirect irradiation), on gas yield and energy conversion efficiency was investigated. The syngas yield drastically increased with the temperature for both steam and CO2 gasification, while increasing the steam content favored H2 production over CO. Continuous biomass conversion was demonstrated with a global solar-to-fuel energy conversion efficiency of 26% at 1300°C and a cold gas efficiency as high as 1.16, confirming efficient solar up-grade of the feedstock energy content.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5067146</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alternative energy sources ; Alternative fuels ; Biomass ; Biomass energy production ; Carbon dioxide ; Chemical and Process Engineering ; Chemical engineering ; Chemical reactors ; Chemical Sciences ; Cold gas ; Concentrators ; Efficiency ; Energy conversion efficiency ; Energy storage ; Engineering Sciences ; Gasification ; Hydrogen production ; Irradiation ; Lignocellulose ; Nuclear fuels ; Organic chemistry ; Oxidation ; Oxidizing agents ; Photovoltaic cells ; Raw materials ; Solar energy ; Synthesis gas</subject><ispartof>AIP conference proceedings, 2018, Vol.2033 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-139b3629f81bb71631767b30338cd4dc139ece658cdba3ee45380fd92ec0198d3</citedby><orcidid>0000-0001-5914-2626 ; 0000-0001-6181-0670 ; 0000-0002-6689-3652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5067146$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,794,885,4512,23930,23931,25140,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02104409$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Mancilla, Rodrigo</contributor><contributor>Richter, Christoph</contributor><creatorcontrib>Rodat, Sylvain</creatorcontrib><creatorcontrib>Bellouard, Quentin</creatorcontrib><creatorcontrib>Abanades, Stéphane</creatorcontrib><creatorcontrib>Chuayboon, Srirat</creatorcontrib><creatorcontrib>Frayssines, Pierre-Eric</creatorcontrib><creatorcontrib>Ravel, Serge</creatorcontrib><title>A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass</title><title>AIP conference proceedings</title><description>Solar energy is the most abundant renewable energy source on earth and its contribution in the energy mix is growing fast, especially for electricity production via photovoltaic panels and to a lesser extent for concentrated solar energy. However, concentrated solar energy can also provide high temperature heat for process applications. Solar fuels are envisioned as alternative fuels that would enable long term storage and transport of solar energy. Solar thermochemical gasification of lignocellulosic biomass has been investigated in this objective. The use of concentrated solar energy as the external heat source for the high-temperature reaction allows producing high-value syngas with both higher energy conversion efficiency and reduced cost of gas cleaning and separation, while saving biomass feedstock. A 1.5 kWth solar reactor was successfully tested for continuous solar driven gasification of millimetric wood particles under real solar irradiation using a parabolic dish concentrator. Investigated temperatures ranged from 1100°C to 1400°C. The influence of temperature, oxidizing agent nature (H2O or CO2), heating configuration (direct or indirect irradiation), on gas yield and energy conversion efficiency was investigated. The syngas yield drastically increased with the temperature for both steam and CO2 gasification, while increasing the steam content favored H2 production over CO. Continuous biomass conversion was demonstrated with a global solar-to-fuel energy conversion efficiency of 26% at 1300°C and a cold gas efficiency as high as 1.16, confirming efficient solar up-grade of the feedstock energy content.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Carbon dioxide</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical reactors</subject><subject>Chemical Sciences</subject><subject>Cold gas</subject><subject>Concentrators</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Gasification</subject><subject>Hydrogen production</subject><subject>Irradiation</subject><subject>Lignocellulose</subject><subject>Nuclear fuels</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Photovoltaic cells</subject><subject>Raw materials</subject><subject>Solar energy</subject><subject>Synthesis gas</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kc9LwzAUx4MoOKcH_4OAJ4XOvKZN2-MY6oSBFwVvIU3TNaNtZtJWdvYfN1vHvHl4vF-f7-M9HkK3QGZAGH2EWUxYAhE7QxOIYwgSBuwcTQjJoiCM6OclunJuQ0iYJUk6QT9z3JpB1bjS6yroVLNVVnS9VdiZWlgsK9VoKWpslZCdsbj05nbtWji8taboZadNi0trmlERFFYPqsVdpWxjTnLP69JHB9qU-NuYAufaNMK5a3RRitqpm6Ofoo_np_fFMli9vbwu5qtAUhZ2AdAs90FWppDnCTAKCUtySihNZREV0veVVCz2WS6oUlFMU1IWWagkgSwt6BTdj3MrUfOt1Y2wO26E5sv5iu9rJAQSRSQbwLN3I-uP_OqV6_jG9Lb16_EQKMRhkpHYUw8j5aTuDred5g7GcuDHZ_BtUf4HA-H77_0J6C-xZ42L</recordid><startdate>20181108</startdate><enddate>20181108</enddate><creator>Rodat, Sylvain</creator><creator>Bellouard, Quentin</creator><creator>Abanades, Stéphane</creator><creator>Chuayboon, Srirat</creator><creator>Frayssines, Pierre-Eric</creator><creator>Ravel, Serge</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5914-2626</orcidid><orcidid>https://orcid.org/0000-0001-6181-0670</orcidid><orcidid>https://orcid.org/0000-0002-6689-3652</orcidid></search><sort><creationdate>20181108</creationdate><title>A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass</title><author>Rodat, Sylvain ; Bellouard, Quentin ; Abanades, Stéphane ; Chuayboon, Srirat ; Frayssines, Pierre-Eric ; Ravel, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-139b3629f81bb71631767b30338cd4dc139ece658cdba3ee45380fd92ec0198d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Carbon dioxide</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical reactors</topic><topic>Chemical Sciences</topic><topic>Cold gas</topic><topic>Concentrators</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Gasification</topic><topic>Hydrogen production</topic><topic>Irradiation</topic><topic>Lignocellulose</topic><topic>Nuclear fuels</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Photovoltaic cells</topic><topic>Raw materials</topic><topic>Solar energy</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodat, Sylvain</creatorcontrib><creatorcontrib>Bellouard, Quentin</creatorcontrib><creatorcontrib>Abanades, Stéphane</creatorcontrib><creatorcontrib>Chuayboon, Srirat</creatorcontrib><creatorcontrib>Frayssines, Pierre-Eric</creatorcontrib><creatorcontrib>Ravel, Serge</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodat, Sylvain</au><au>Bellouard, Quentin</au><au>Abanades, Stéphane</au><au>Chuayboon, Srirat</au><au>Frayssines, Pierre-Eric</au><au>Ravel, Serge</au><au>Mancilla, Rodrigo</au><au>Richter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass</atitle><btitle>AIP conference proceedings</btitle><date>2018-11-08</date><risdate>2018</risdate><volume>2033</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Solar energy is the most abundant renewable energy source on earth and its contribution in the energy mix is growing fast, especially for electricity production via photovoltaic panels and to a lesser extent for concentrated solar energy. However, concentrated solar energy can also provide high temperature heat for process applications. Solar fuels are envisioned as alternative fuels that would enable long term storage and transport of solar energy. Solar thermochemical gasification of lignocellulosic biomass has been investigated in this objective. The use of concentrated solar energy as the external heat source for the high-temperature reaction allows producing high-value syngas with both higher energy conversion efficiency and reduced cost of gas cleaning and separation, while saving biomass feedstock. A 1.5 kWth solar reactor was successfully tested for continuous solar driven gasification of millimetric wood particles under real solar irradiation using a parabolic dish concentrator. Investigated temperatures ranged from 1100°C to 1400°C. The influence of temperature, oxidizing agent nature (H2O or CO2), heating configuration (direct or indirect irradiation), on gas yield and energy conversion efficiency was investigated. The syngas yield drastically increased with the temperature for both steam and CO2 gasification, while increasing the steam content favored H2 production over CO. Continuous biomass conversion was demonstrated with a global solar-to-fuel energy conversion efficiency of 26% at 1300°C and a cold gas efficiency as high as 1.16, confirming efficient solar up-grade of the feedstock energy content.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5067146</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5914-2626</orcidid><orcidid>https://orcid.org/0000-0001-6181-0670</orcidid><orcidid>https://orcid.org/0000-0002-6689-3652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.2033 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5067146
source AIP Journals Complete
subjects Alternative energy sources
Alternative fuels
Biomass
Biomass energy production
Carbon dioxide
Chemical and Process Engineering
Chemical engineering
Chemical reactors
Chemical Sciences
Cold gas
Concentrators
Efficiency
Energy conversion efficiency
Energy storage
Engineering Sciences
Gasification
Hydrogen production
Irradiation
Lignocellulose
Nuclear fuels
Organic chemistry
Oxidation
Oxidizing agents
Photovoltaic cells
Raw materials
Solar energy
Synthesis gas
title A novel high-temperature solar chemical reactor for syngas production from solar-driven thermochemical gasification of wood biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20high-temperature%20solar%20chemical%20reactor%20for%20syngas%20production%20from%20solar-driven%20thermochemical%20gasification%20of%20wood%20biomass&rft.btitle=AIP%20conference%20proceedings&rft.au=Rodat,%20Sylvain&rft.date=2018-11-08&rft.volume=2033&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5067146&rft_dat=%3Cproquest_scita%3E2131527905%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131527905&rft_id=info:pmid/&rfr_iscdi=true