Solving the biharmonic equation in irregular domains by the least squares collocation method
This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2027 |
creator | Belyaev, V. A. Shapeev, V. P. |
description | This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the LSC method. The algorithm implemented is applied in irregular domains. The boundaries of these domains are given by analytical curves, in particular, by splines. The irregular domain is embedded in a rectangle covered by a regular grid with rectangular cells. In this paper we use the irregular cells (i-cells) which are cut off by the domain boundary from the rectangular cells of the initial regular grid. The idea of attaching elongated i-cells to the neighboring ones is used. A separate piece of the analytical solution is constructed in the combined cells. The collocation and matching points located outside the domain are used to approximate the differential equations in the boundary cells. These two approaches allow us to reduce essentially the conditionality of the corresponding system of linear algebraic equations. It is shown that the approximate solutions obtained by the LSC method converge with an increased order and coincide with the analytical solutions of the test problems with high accuracy in the case of the known solution. The numerical results are compared with those found by other authors who used a high order finite difference method (FDM). The nonhomogeneous biharmonic equation is used to model the stress-strain state (SSS) of isotropic thin irregular plates as an application. |
doi_str_mv | 10.1063/1.5065188 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5065188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128210350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8bce0fa230f2394858fa7fbcf733eddfc33ff87b4ea63ad544470dd2b75579163</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuBOm5jrJLKV4g4ILFVwIIZNLmzIzaZOZQt_esRXcCQfO5jsXfgCuMZphVNI7POOo5FjKEzDBnONClLg8BROEKlYQRj_PwUXOa4RIJYScgK-32OxCt4T9ysE6rHRqYxcMdNtB9yF2MIyVklsOjU7QxlaHLsN6f_CN07mHeaTJZWhi00RznGpdv4r2Epx53WR39dun4OPx4X3-XCxen17m94vCUCL7QtbGIa8JRZ7QikkuvRa-Nl5Q6qz1hlLvpaiZ0yXVljPGBLKW1IJzUeGSTsHNce8mxe3gcq_WcUjdeFIRTCTBiHI0qtujyib0hzfVJoVWp73CSP2kp7D6Te8_vIvpD6qN9fQbQgFxvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2128210350</pqid></control><display><type>conference_proceeding</type><title>Solving the biharmonic equation in irregular domains by the least squares collocation method</title><source>AIP Journals Complete</source><creator>Belyaev, V. A. ; Shapeev, V. P.</creator><contributor>Fomin, Vasily</contributor><creatorcontrib>Belyaev, V. A. ; Shapeev, V. P. ; Fomin, Vasily</creatorcontrib><description>This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the LSC method. The algorithm implemented is applied in irregular domains. The boundaries of these domains are given by analytical curves, in particular, by splines. The irregular domain is embedded in a rectangle covered by a regular grid with rectangular cells. In this paper we use the irregular cells (i-cells) which are cut off by the domain boundary from the rectangular cells of the initial regular grid. The idea of attaching elongated i-cells to the neighboring ones is used. A separate piece of the analytical solution is constructed in the combined cells. The collocation and matching points located outside the domain are used to approximate the differential equations in the boundary cells. These two approaches allow us to reduce essentially the conditionality of the corresponding system of linear algebraic equations. It is shown that the approximate solutions obtained by the LSC method converge with an increased order and coincide with the analytical solutions of the test problems with high accuracy in the case of the known solution. The numerical results are compared with those found by other authors who used a high order finite difference method (FDM). The nonhomogeneous biharmonic equation is used to model the stress-strain state (SSS) of isotropic thin irregular plates as an application.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5065188</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biharmonic equations ; Collocation methods ; Differential equations ; Domains ; Finite difference method ; Least squares ; Linear algebra ; Mathematical models ; Polynomials ; Splines</subject><ispartof>AIP Conference Proceedings, 2018, Vol.2027 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-8bce0fa230f2394858fa7fbcf733eddfc33ff87b4ea63ad544470dd2b75579163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5065188$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930,76389</link.rule.ids></links><search><contributor>Fomin, Vasily</contributor><creatorcontrib>Belyaev, V. A.</creatorcontrib><creatorcontrib>Shapeev, V. P.</creatorcontrib><title>Solving the biharmonic equation in irregular domains by the least squares collocation method</title><title>AIP Conference Proceedings</title><description>This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the LSC method. The algorithm implemented is applied in irregular domains. The boundaries of these domains are given by analytical curves, in particular, by splines. The irregular domain is embedded in a rectangle covered by a regular grid with rectangular cells. In this paper we use the irregular cells (i-cells) which are cut off by the domain boundary from the rectangular cells of the initial regular grid. The idea of attaching elongated i-cells to the neighboring ones is used. A separate piece of the analytical solution is constructed in the combined cells. The collocation and matching points located outside the domain are used to approximate the differential equations in the boundary cells. These two approaches allow us to reduce essentially the conditionality of the corresponding system of linear algebraic equations. It is shown that the approximate solutions obtained by the LSC method converge with an increased order and coincide with the analytical solutions of the test problems with high accuracy in the case of the known solution. The numerical results are compared with those found by other authors who used a high order finite difference method (FDM). The nonhomogeneous biharmonic equation is used to model the stress-strain state (SSS) of isotropic thin irregular plates as an application.</description><subject>Biharmonic equations</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Domains</subject><subject>Finite difference method</subject><subject>Least squares</subject><subject>Linear algebra</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Splines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuBOm5jrJLKV4g4ILFVwIIZNLmzIzaZOZQt_esRXcCQfO5jsXfgCuMZphVNI7POOo5FjKEzDBnONClLg8BROEKlYQRj_PwUXOa4RIJYScgK-32OxCt4T9ysE6rHRqYxcMdNtB9yF2MIyVklsOjU7QxlaHLsN6f_CN07mHeaTJZWhi00RznGpdv4r2Epx53WR39dun4OPx4X3-XCxen17m94vCUCL7QtbGIa8JRZ7QikkuvRa-Nl5Q6qz1hlLvpaiZ0yXVljPGBLKW1IJzUeGSTsHNce8mxe3gcq_WcUjdeFIRTCTBiHI0qtujyib0hzfVJoVWp73CSP2kp7D6Te8_vIvpD6qN9fQbQgFxvg</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Belyaev, V. A.</creator><creator>Shapeev, V. P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181102</creationdate><title>Solving the biharmonic equation in irregular domains by the least squares collocation method</title><author>Belyaev, V. A. ; Shapeev, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8bce0fa230f2394858fa7fbcf733eddfc33ff87b4ea63ad544470dd2b75579163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biharmonic equations</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Domains</topic><topic>Finite difference method</topic><topic>Least squares</topic><topic>Linear algebra</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belyaev, V. A.</creatorcontrib><creatorcontrib>Shapeev, V. P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belyaev, V. A.</au><au>Shapeev, V. P.</au><au>Fomin, Vasily</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving the biharmonic equation in irregular domains by the least squares collocation method</atitle><btitle>AIP Conference Proceedings</btitle><date>2018-11-02</date><risdate>2018</risdate><volume>2027</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the LSC method. The algorithm implemented is applied in irregular domains. The boundaries of these domains are given by analytical curves, in particular, by splines. The irregular domain is embedded in a rectangle covered by a regular grid with rectangular cells. In this paper we use the irregular cells (i-cells) which are cut off by the domain boundary from the rectangular cells of the initial regular grid. The idea of attaching elongated i-cells to the neighboring ones is used. A separate piece of the analytical solution is constructed in the combined cells. The collocation and matching points located outside the domain are used to approximate the differential equations in the boundary cells. These two approaches allow us to reduce essentially the conditionality of the corresponding system of linear algebraic equations. It is shown that the approximate solutions obtained by the LSC method converge with an increased order and coincide with the analytical solutions of the test problems with high accuracy in the case of the known solution. The numerical results are compared with those found by other authors who used a high order finite difference method (FDM). The nonhomogeneous biharmonic equation is used to model the stress-strain state (SSS) of isotropic thin irregular plates as an application.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5065188</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2018, Vol.2027 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5065188 |
source | AIP Journals Complete |
subjects | Biharmonic equations Collocation methods Differential equations Domains Finite difference method Least squares Linear algebra Mathematical models Polynomials Splines |
title | Solving the biharmonic equation in irregular domains by the least squares collocation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20the%20biharmonic%20equation%20in%20irregular%20domains%20by%20the%20least%20squares%20collocation%20method&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Belyaev,%20V.%20A.&rft.date=2018-11-02&rft.volume=2027&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5065188&rft_dat=%3Cproquest_scita%3E2128210350%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128210350&rft_id=info:pmid/&rfr_iscdi=true |