Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems

For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-01, Vol.150 (3), p.034107-034107
1. Verfasser: Whitten, Jerry L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034107
container_issue 3
container_start_page 034107
container_title The Journal of chemical physics
container_volume 150
creator Whitten, Jerry L.
description For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. The accuracy is further improved by a single diagonalization of the Fock matrix constructed from the predicted orbitals. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. On diagonalization of the Fock matrix, the corresponding errors are reduced by a factor of three to less than 0.016 eV and 0.006 eV, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-a are reported.
doi_str_mv 10.1063/1.5064781
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5064781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168376027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-68c87df514d71458429e8fc9942ee0b0d2a64147f30b0efdfa4da636ce5bc2fd3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTju68AUk4EaFGm8q6STlTgb_YEARXRfp5GbIUJW0SWq09z64me52BAVX4eR899yQQ8hjBmcMJH_JztYghdLsDlkx0EOn5AB3yQqgZ90gQZ6QB6VcAQBTvbhPTjhICUwMK_LzU0YXbA0p0uTpbOKuwwltze3iu7lGv8S9W-hSQrykpqY5WLpNFWMNZiqv6Gf0IeLcdKEmOoo_mlf2MzXRmk0T-wUz1jawZyaTL5GWXak4l4fknm8GPjqep-Tr2zdfzt93Fx_ffTh_fdFZrnntpLZaOb9mwikm1lr0A2pvh0H0iLAB1xspmFCeN4HeeSOckVxaXG9s7x0_Jc8Ouducvi1Y6jiHYnGaTMS0lLFnauBaC8Ua-vQv9CotObbXNUpqriT0qlHPD5TNqZSMftzmMJu8GxmMN9WMbDxW09gnx8RlM6O7JX930YAXB6DYUM3Nh90y1yn_SRq3zv8P_nf1L9typ8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168376027</pqid></control><display><type>article</type><title>Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Whitten, Jerry L.</creator><creatorcontrib>Whitten, Jerry L.</creatorcontrib><description>For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. The accuracy is further improved by a single diagonalization of the Fock matrix constructed from the predicted orbitals. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. On diagonalization of the Fock matrix, the corresponding errors are reduced by a factor of three to less than 0.016 eV and 0.006 eV, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-a are reported.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5064781</identifier><identifier>PMID: 30660149</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical bonds ; Chlorophyll ; Configuration interaction ; Electrons ; Functional groups ; Molecular orbitals ; Nanoparticles ; Predictions ; Scaling ; Schrodinger equation ; Self consistent fields ; Transition metal oxides ; Transition metals ; Wave functions</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (3), p.034107-034107</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-68c87df514d71458429e8fc9942ee0b0d2a64147f30b0efdfa4da636ce5bc2fd3</citedby><cites>FETCH-LOGICAL-c383t-68c87df514d71458429e8fc9942ee0b0d2a64147f30b0efdfa4da636ce5bc2fd3</cites><orcidid>0000-0002-3339-7425 ; 0000000233397425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5064781$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30660149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitten, Jerry L.</creatorcontrib><title>Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. The accuracy is further improved by a single diagonalization of the Fock matrix constructed from the predicted orbitals. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. On diagonalization of the Fock matrix, the corresponding errors are reduced by a factor of three to less than 0.016 eV and 0.006 eV, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-a are reported.</description><subject>Chemical bonds</subject><subject>Chlorophyll</subject><subject>Configuration interaction</subject><subject>Electrons</subject><subject>Functional groups</subject><subject>Molecular orbitals</subject><subject>Nanoparticles</subject><subject>Predictions</subject><subject>Scaling</subject><subject>Schrodinger equation</subject><subject>Self consistent fields</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEUhYMoTju68AUk4EaFGm8q6STlTgb_YEARXRfp5GbIUJW0SWq09z64me52BAVX4eR899yQQ8hjBmcMJH_JztYghdLsDlkx0EOn5AB3yQqgZ90gQZ6QB6VcAQBTvbhPTjhICUwMK_LzU0YXbA0p0uTpbOKuwwltze3iu7lGv8S9W-hSQrykpqY5WLpNFWMNZiqv6Gf0IeLcdKEmOoo_mlf2MzXRmk0T-wUz1jawZyaTL5GWXak4l4fknm8GPjqep-Tr2zdfzt93Fx_ffTh_fdFZrnntpLZaOb9mwikm1lr0A2pvh0H0iLAB1xspmFCeN4HeeSOckVxaXG9s7x0_Jc8Ouducvi1Y6jiHYnGaTMS0lLFnauBaC8Ua-vQv9CotObbXNUpqriT0qlHPD5TNqZSMftzmMJu8GxmMN9WMbDxW09gnx8RlM6O7JX930YAXB6DYUM3Nh90y1yn_SRq3zv8P_nf1L9typ8I</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Whitten, Jerry L.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3339-7425</orcidid><orcidid>https://orcid.org/0000000233397425</orcidid></search><sort><creationdate>20190121</creationdate><title>Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems</title><author>Whitten, Jerry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-68c87df514d71458429e8fc9942ee0b0d2a64147f30b0efdfa4da636ce5bc2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical bonds</topic><topic>Chlorophyll</topic><topic>Configuration interaction</topic><topic>Electrons</topic><topic>Functional groups</topic><topic>Molecular orbitals</topic><topic>Nanoparticles</topic><topic>Predictions</topic><topic>Scaling</topic><topic>Schrodinger equation</topic><topic>Self consistent fields</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitten, Jerry L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitten, Jerry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-21</date><risdate>2019</risdate><volume>150</volume><issue>3</issue><spage>034107</spage><epage>034107</epage><pages>034107-034107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. The accuracy is further improved by a single diagonalization of the Fock matrix constructed from the predicted orbitals. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. On diagonalization of the Fock matrix, the corresponding errors are reduced by a factor of three to less than 0.016 eV and 0.006 eV, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-a are reported.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30660149</pmid><doi>10.1063/1.5064781</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3339-7425</orcidid><orcidid>https://orcid.org/0000000233397425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (3), p.034107-034107
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5064781
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemical bonds
Chlorophyll
Configuration interaction
Electrons
Functional groups
Molecular orbitals
Nanoparticles
Predictions
Scaling
Schrodinger equation
Self consistent fields
Transition metal oxides
Transition metals
Wave functions
title Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20many-electron%20wavefunctions%20using%20atomic%20potentials:%20Refinements%20and%20extensions%20to%20transition%20metals%20and%20large%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Whitten,%20Jerry%20L.&rft.date=2019-01-21&rft.volume=150&rft.issue=3&rft.spage=034107&rft.epage=034107&rft.pages=034107-034107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5064781&rft_dat=%3Cproquest_scita%3E2168376027%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168376027&rft_id=info:pmid/30660149&rfr_iscdi=true