Marshall-Olkin extended inverse power Lindley distribution with applications
The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lind...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2021 |
creator | Hibatullah, Rafif Widyaningsih, Yekti Abdullah, Sarini |
description | The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lindley distribution was proposed by Barco et al., called the inverse power Lindley distribution. 2 This paper will introduce an extension of the inverse power Lindley distribution using the Marshall–Olkin method, resulting in the Marshall–Olkin Extended Inverse Power Lindley (MOEIPL) distribution. The MOEIPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the inverse power Lindley distribution. Some properties of the MOEIPL are explored, such as its probability density function, cumulative distribution function, hazard rate, survival function, and quantiles. Estimation of the MOEIPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to model the wind speed in Demak, Indonesia. The results illustrate the MOEIPL distribution and arre compared to Lindley, power Lindley, inverse Lindley, inverse power Lindley, gamma, and Weibull. Model comparison using the AIC shows that MOEIPL fits the data better than the other distributions. |
doi_str_mv | 10.1063/1.5062789 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5062789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121120175</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-6fa6760a057f0e291e09fffc145539d6a53dbf944a6f333f352801218aa869573</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1fZNNsjlK8QtWelHwFtJuQlPX3TVJrf33trangeFhZhhCrhEmCJLf4USAZKrSJ2SEQmChJMpTMgLQZcFK_nFOLlJaATCtVDUi9auNaWnbtpi1n6Gj7je7rnENDd2Pi8nRod-4SOvQNa3b0iakHMN8nUPf0U3IS2qHoQ0LuzfSJTnztk3u6qhj8v748DZ9LurZ08v0vi4GJngupLdSSbAglAfHNDrQ3vsFlkJw3UgreDP3uiyt9JxzzwWrABlW1lZSC8XH5OaQO8T-e-1SNqt-HbtdpWE7DhmgEjvq9kClRcj_A80Qw5eNW4Ng9m8ZNMe3-B82Plvz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121120175</pqid></control><display><type>conference_proceeding</type><title>Marshall-Olkin extended inverse power Lindley distribution with applications</title><source>AIP Journals Complete</source><creator>Hibatullah, Rafif ; Widyaningsih, Yekti ; Abdullah, Sarini</creator><contributor>Jatmiko, Yoga Dwi ; Karim, Corina ; Safitri, Anna ; Pamungkas, Mauludi Ariesto ; Nurjannah ; Azrianingsih, Rodliyati</contributor><creatorcontrib>Hibatullah, Rafif ; Widyaningsih, Yekti ; Abdullah, Sarini ; Jatmiko, Yoga Dwi ; Karim, Corina ; Safitri, Anna ; Pamungkas, Mauludi Ariesto ; Nurjannah ; Azrianingsih, Rodliyati</creatorcontrib><description>The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lindley distribution was proposed by Barco et al., called the inverse power Lindley distribution. 2 This paper will introduce an extension of the inverse power Lindley distribution using the Marshall–Olkin method, resulting in the Marshall–Olkin Extended Inverse Power Lindley (MOEIPL) distribution. The MOEIPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the inverse power Lindley distribution. Some properties of the MOEIPL are explored, such as its probability density function, cumulative distribution function, hazard rate, survival function, and quantiles. Estimation of the MOEIPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to model the wind speed in Demak, Indonesia. The results illustrate the MOEIPL distribution and arre compared to Lindley, power Lindley, inverse Lindley, inverse power Lindley, gamma, and Weibull. Model comparison using the AIC shows that MOEIPL fits the data better than the other distributions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5062789</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bayesian analysis ; Distribution functions ; Economic models ; Electric power distribution ; Flexibility ; Mathematical models ; Maximum likelihood method ; Parameter estimation ; Probability density functions ; Probability distribution functions ; Quantiles ; Statistical analysis ; Wind speed</subject><ispartof>AIP conference proceedings, 2018, Vol.2021 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5062789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23911,23912,25120,27903,27904,76129</link.rule.ids></links><search><contributor>Jatmiko, Yoga Dwi</contributor><contributor>Karim, Corina</contributor><contributor>Safitri, Anna</contributor><contributor>Pamungkas, Mauludi Ariesto</contributor><contributor>Nurjannah</contributor><contributor>Azrianingsih, Rodliyati</contributor><creatorcontrib>Hibatullah, Rafif</creatorcontrib><creatorcontrib>Widyaningsih, Yekti</creatorcontrib><creatorcontrib>Abdullah, Sarini</creatorcontrib><title>Marshall-Olkin extended inverse power Lindley distribution with applications</title><title>AIP conference proceedings</title><description>The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lindley distribution was proposed by Barco et al., called the inverse power Lindley distribution. 2 This paper will introduce an extension of the inverse power Lindley distribution using the Marshall–Olkin method, resulting in the Marshall–Olkin Extended Inverse Power Lindley (MOEIPL) distribution. The MOEIPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the inverse power Lindley distribution. Some properties of the MOEIPL are explored, such as its probability density function, cumulative distribution function, hazard rate, survival function, and quantiles. Estimation of the MOEIPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to model the wind speed in Demak, Indonesia. The results illustrate the MOEIPL distribution and arre compared to Lindley, power Lindley, inverse Lindley, inverse power Lindley, gamma, and Weibull. Model comparison using the AIC shows that MOEIPL fits the data better than the other distributions.</description><subject>Bayesian analysis</subject><subject>Distribution functions</subject><subject>Economic models</subject><subject>Electric power distribution</subject><subject>Flexibility</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>Parameter estimation</subject><subject>Probability density functions</subject><subject>Probability distribution functions</subject><subject>Quantiles</subject><subject>Statistical analysis</subject><subject>Wind speed</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1fZNNsjlK8QtWelHwFtJuQlPX3TVJrf33trangeFhZhhCrhEmCJLf4USAZKrSJ2SEQmChJMpTMgLQZcFK_nFOLlJaATCtVDUi9auNaWnbtpi1n6Gj7je7rnENDd2Pi8nRod-4SOvQNa3b0iakHMN8nUPf0U3IS2qHoQ0LuzfSJTnztk3u6qhj8v748DZ9LurZ08v0vi4GJngupLdSSbAglAfHNDrQ3vsFlkJw3UgreDP3uiyt9JxzzwWrABlW1lZSC8XH5OaQO8T-e-1SNqt-HbtdpWE7DhmgEjvq9kClRcj_A80Qw5eNW4Ng9m8ZNMe3-B82Plvz</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Hibatullah, Rafif</creator><creator>Widyaningsih, Yekti</creator><creator>Abdullah, Sarini</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181017</creationdate><title>Marshall-Olkin extended inverse power Lindley distribution with applications</title><author>Hibatullah, Rafif ; Widyaningsih, Yekti ; Abdullah, Sarini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-6fa6760a057f0e291e09fffc145539d6a53dbf944a6f333f352801218aa869573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Distribution functions</topic><topic>Economic models</topic><topic>Electric power distribution</topic><topic>Flexibility</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>Parameter estimation</topic><topic>Probability density functions</topic><topic>Probability distribution functions</topic><topic>Quantiles</topic><topic>Statistical analysis</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hibatullah, Rafif</creatorcontrib><creatorcontrib>Widyaningsih, Yekti</creatorcontrib><creatorcontrib>Abdullah, Sarini</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibatullah, Rafif</au><au>Widyaningsih, Yekti</au><au>Abdullah, Sarini</au><au>Jatmiko, Yoga Dwi</au><au>Karim, Corina</au><au>Safitri, Anna</au><au>Pamungkas, Mauludi Ariesto</au><au>Nurjannah</au><au>Azrianingsih, Rodliyati</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Marshall-Olkin extended inverse power Lindley distribution with applications</atitle><btitle>AIP conference proceedings</btitle><date>2018-10-17</date><risdate>2018</risdate><volume>2021</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lindley distribution was proposed by Barco et al., called the inverse power Lindley distribution. 2 This paper will introduce an extension of the inverse power Lindley distribution using the Marshall–Olkin method, resulting in the Marshall–Olkin Extended Inverse Power Lindley (MOEIPL) distribution. The MOEIPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the inverse power Lindley distribution. Some properties of the MOEIPL are explored, such as its probability density function, cumulative distribution function, hazard rate, survival function, and quantiles. Estimation of the MOEIPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to model the wind speed in Demak, Indonesia. The results illustrate the MOEIPL distribution and arre compared to Lindley, power Lindley, inverse Lindley, inverse power Lindley, gamma, and Weibull. Model comparison using the AIC shows that MOEIPL fits the data better than the other distributions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5062789</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.2021 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5062789 |
source | AIP Journals Complete |
subjects | Bayesian analysis Distribution functions Economic models Electric power distribution Flexibility Mathematical models Maximum likelihood method Parameter estimation Probability density functions Probability distribution functions Quantiles Statistical analysis Wind speed |
title | Marshall-Olkin extended inverse power Lindley distribution with applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Marshall-Olkin%20extended%20inverse%20power%20Lindley%20distribution%20with%20applications&rft.btitle=AIP%20conference%20proceedings&rft.au=Hibatullah,%20Rafif&rft.date=2018-10-17&rft.volume=2021&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5062789&rft_dat=%3Cproquest_scita%3E2121120175%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121120175&rft_id=info:pmid/&rfr_iscdi=true |