Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules

Hydrogen-rich compounds provide an efficient route to pre-compressing hydrogen molecules and facilitating the creation of metallic hydrogen at much reduced pressure. Motivated by the long-sought theoretically proposed calcium hydrides, we have performed high-pressure experiments on the Ca–H system i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044507-044507
Hauptverfasser: Wu, Gang, Huang, Xiaoli, Xie, Hui, Li, Xin, Liu, Mingkun, Liang, Yongfu, Huang, Yanping, Duan, Defang, Li, Fangfei, Liu, Bingbing, Cui, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044507
container_issue 4
container_start_page 044507
container_title The Journal of chemical physics
container_volume 150
creator Wu, Gang
Huang, Xiaoli
Xie, Hui
Li, Xin
Liu, Mingkun
Liang, Yongfu
Huang, Yanping
Duan, Defang
Li, Fangfei
Liu, Bingbing
Cui, Tian
description Hydrogen-rich compounds provide an efficient route to pre-compressing hydrogen molecules and facilitating the creation of metallic hydrogen at much reduced pressure. Motivated by the long-sought theoretically proposed calcium hydrides, we have performed high-pressure experiments on the Ca–H system in a laser-heated diamond anvil cell. The unconventional compound CaH4 with I4/mmm symmetry has been discovered to be stable above 25.5 GPa. Of particular significance is the crystal structure of CaH4, which has an elongated H2 molecular unit whose intramolecular bond strength changes with pressure. Below the dissociation pressure of pure hydrogen, the elongated H2 unit is likely to dissociate into an atomic one. Our findings indicate that the presence of Ca atoms causes a very positive chemical pre-compression effect to potentially prompt the dissociation of the H2 unit.
doi_str_mv 10.1063/1.5053650
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5053650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172440442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-22371de77ac661be72984921ad5c6b7e3e5646cbe0a484b9763ce24a351a68603</originalsourceid><addsrcrecordid>eNqd0E1Lw0AQBuBFFKzVg_9gwYsKqbMf2W28leIXFLzYk4ew2Ux0S5qNu4nYf29qC4JHTwPDM8PMS8g5gwkDJW7YJIVUqBQOyIjBNEu0yuCQjAA4SzIF6picxLgCAKa5HJHXZYNfLdoOS2pNbV2_pq2vN--bMrgS6dw8yls6G3oxuqJGGnzfIe08LV2M3jrTOd9QX9HthH_Dhq59jbavMZ6So8rUEc_2dUyW93cv88dk8fzwNJ8tEisUdAnnQrMStTZWKVag5tlUZpyZMrWq0CgwVVLZAsHIqSwyrYRFLo1ImVFTBWJMLnd72-A_eoxdvnbRYl2bBn0fc850lsohDDXQiz905fvQDNdtFZcSpOSDutopG4a3A1Z5G9zahE3OIN_GnLN8H_Ngr3c2Wtf9hPE__OnDL8zbshLff4WKJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172440442</pqid></control><display><type>article</type><title>Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Gang ; Huang, Xiaoli ; Xie, Hui ; Li, Xin ; Liu, Mingkun ; Liang, Yongfu ; Huang, Yanping ; Duan, Defang ; Li, Fangfei ; Liu, Bingbing ; Cui, Tian</creator><creatorcontrib>Wu, Gang ; Huang, Xiaoli ; Xie, Hui ; Li, Xin ; Liu, Mingkun ; Liang, Yongfu ; Huang, Yanping ; Duan, Defang ; Li, Fangfei ; Liu, Bingbing ; Cui, Tian</creatorcontrib><description>Hydrogen-rich compounds provide an efficient route to pre-compressing hydrogen molecules and facilitating the creation of metallic hydrogen at much reduced pressure. Motivated by the long-sought theoretically proposed calcium hydrides, we have performed high-pressure experiments on the Ca–H system in a laser-heated diamond anvil cell. The unconventional compound CaH4 with I4/mmm symmetry has been discovered to be stable above 25.5 GPa. Of particular significance is the crystal structure of CaH4, which has an elongated H2 molecular unit whose intramolecular bond strength changes with pressure. Below the dissociation pressure of pure hydrogen, the elongated H2 unit is likely to dissociate into an atomic one. Our findings indicate that the presence of Ca atoms causes a very positive chemical pre-compression effect to potentially prompt the dissociation of the H2 unit.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5053650</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bond strength ; Bonding strength ; Calcium ; Crystal structure ; Diamond anvil cells ; Diamonds ; Elongated structure ; Hydrogen ; Laser beam heating ; Metallic hydrogen ; Organic chemistry</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044507-044507</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-22371de77ac661be72984921ad5c6b7e3e5646cbe0a484b9763ce24a351a68603</citedby><cites>FETCH-LOGICAL-c360t-22371de77ac661be72984921ad5c6b7e3e5646cbe0a484b9763ce24a351a68603</cites><orcidid>0000-0002-0342-3872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5053650$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Liang, Yongfu</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Duan, Defang</creatorcontrib><creatorcontrib>Li, Fangfei</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><title>Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules</title><title>The Journal of chemical physics</title><description>Hydrogen-rich compounds provide an efficient route to pre-compressing hydrogen molecules and facilitating the creation of metallic hydrogen at much reduced pressure. Motivated by the long-sought theoretically proposed calcium hydrides, we have performed high-pressure experiments on the Ca–H system in a laser-heated diamond anvil cell. The unconventional compound CaH4 with I4/mmm symmetry has been discovered to be stable above 25.5 GPa. Of particular significance is the crystal structure of CaH4, which has an elongated H2 molecular unit whose intramolecular bond strength changes with pressure. Below the dissociation pressure of pure hydrogen, the elongated H2 unit is likely to dissociate into an atomic one. Our findings indicate that the presence of Ca atoms causes a very positive chemical pre-compression effect to potentially prompt the dissociation of the H2 unit.</description><subject>Bond strength</subject><subject>Bonding strength</subject><subject>Calcium</subject><subject>Crystal structure</subject><subject>Diamond anvil cells</subject><subject>Diamonds</subject><subject>Elongated structure</subject><subject>Hydrogen</subject><subject>Laser beam heating</subject><subject>Metallic hydrogen</subject><subject>Organic chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1Lw0AQBuBFFKzVg_9gwYsKqbMf2W28leIXFLzYk4ew2Ux0S5qNu4nYf29qC4JHTwPDM8PMS8g5gwkDJW7YJIVUqBQOyIjBNEu0yuCQjAA4SzIF6picxLgCAKa5HJHXZYNfLdoOS2pNbV2_pq2vN--bMrgS6dw8yls6G3oxuqJGGnzfIe08LV2M3jrTOd9QX9HthH_Dhq59jbavMZ6So8rUEc_2dUyW93cv88dk8fzwNJ8tEisUdAnnQrMStTZWKVag5tlUZpyZMrWq0CgwVVLZAsHIqSwyrYRFLo1ImVFTBWJMLnd72-A_eoxdvnbRYl2bBn0fc850lsohDDXQiz905fvQDNdtFZcSpOSDutopG4a3A1Z5G9zahE3OIN_GnLN8H_Ngr3c2Wtf9hPE__OnDL8zbshLff4WKJQ</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Wu, Gang</creator><creator>Huang, Xiaoli</creator><creator>Xie, Hui</creator><creator>Li, Xin</creator><creator>Liu, Mingkun</creator><creator>Liang, Yongfu</creator><creator>Huang, Yanping</creator><creator>Duan, Defang</creator><creator>Li, Fangfei</creator><creator>Liu, Bingbing</creator><creator>Cui, Tian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0342-3872</orcidid></search><sort><creationdate>20190128</creationdate><title>Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules</title><author>Wu, Gang ; Huang, Xiaoli ; Xie, Hui ; Li, Xin ; Liu, Mingkun ; Liang, Yongfu ; Huang, Yanping ; Duan, Defang ; Li, Fangfei ; Liu, Bingbing ; Cui, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-22371de77ac661be72984921ad5c6b7e3e5646cbe0a484b9763ce24a351a68603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bond strength</topic><topic>Bonding strength</topic><topic>Calcium</topic><topic>Crystal structure</topic><topic>Diamond anvil cells</topic><topic>Diamonds</topic><topic>Elongated structure</topic><topic>Hydrogen</topic><topic>Laser beam heating</topic><topic>Metallic hydrogen</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Liang, Yongfu</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Duan, Defang</creatorcontrib><creatorcontrib>Li, Fangfei</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Gang</au><au>Huang, Xiaoli</au><au>Xie, Hui</au><au>Li, Xin</au><au>Liu, Mingkun</au><au>Liang, Yongfu</au><au>Huang, Yanping</au><au>Duan, Defang</au><au>Li, Fangfei</au><au>Liu, Bingbing</au><au>Cui, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules</atitle><jtitle>The Journal of chemical physics</jtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044507</spage><epage>044507</epage><pages>044507-044507</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Hydrogen-rich compounds provide an efficient route to pre-compressing hydrogen molecules and facilitating the creation of metallic hydrogen at much reduced pressure. Motivated by the long-sought theoretically proposed calcium hydrides, we have performed high-pressure experiments on the Ca–H system in a laser-heated diamond anvil cell. The unconventional compound CaH4 with I4/mmm symmetry has been discovered to be stable above 25.5 GPa. Of particular significance is the crystal structure of CaH4, which has an elongated H2 molecular unit whose intramolecular bond strength changes with pressure. Below the dissociation pressure of pure hydrogen, the elongated H2 unit is likely to dissociate into an atomic one. Our findings indicate that the presence of Ca atoms causes a very positive chemical pre-compression effect to potentially prompt the dissociation of the H2 unit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5053650</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0342-3872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (4), p.044507-044507
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5053650
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bond strength
Bonding strength
Calcium
Crystal structure
Diamond anvil cells
Diamonds
Elongated structure
Hydrogen
Laser beam heating
Metallic hydrogen
Organic chemistry
title Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20calcium%20polyhydride%20CaH4:%20A%20possible%20route%20to%20dissociation%20of%20hydrogen%20molecules&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wu,%20Gang&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044507&rft.epage=044507&rft.pages=044507-044507&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5053650&rft_dat=%3Cproquest_scita%3E2172440442%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172440442&rft_id=info:pmid/&rfr_iscdi=true