A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions

Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-09, Vol.113 (12)
Hauptverfasser: Chen, Xue-Kun, Liu, Jun, Xie, Zhong-Xiang, Zhang, Yong, Deng, Yuan-Xiang, Chen, Ke-Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 113
creator Chen, Xue-Kun
Liu, Jun
Xie, Zhong-Xiang
Zhang, Yong
Deng, Yuan-Xiang
Chen, Ke-Qiu
description Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.
doi_str_mv 10.1063/1.5053233
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5053233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421184028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcK0eczksSzFFxTc6DpkMomT0klqMhX896YPcO_qcrnfOZdzALjFaIYRo3M8a1BDCaVnYIIR5xXFWJyDCUKIVkw2-BJc5bwua1OgCegXcBON3sBkcww6GAsHa3odfB6giwmOvU3D4W5G77zRo48B-gC3yefRBztvU5H1toOfSW97GywsPjH5ti3gehfMXpGvwYXTm2xvTnMKPp4e35cv1ert-XW5WFWGSjpWRCKmLROdkARJKVsqheSYtdo4xjk3vCGidswKyjAzHcK1dIzwmqG6E7WmU3B39N2m-LWzeVTruEuhvFSkJqWMGhFRqPsjZVLMOVmnSpxBpx-FkdoXqbA6FVnYhyObjR8P8f8Hf8f0B6pt5-gv7bGBOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421184028</pqid></control><display><type>article</type><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</creator><creatorcontrib>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</creatorcontrib><description>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5053233</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ambient temperature ; Applied physics ; Bias ; Graphene ; Molecular dynamics ; Nanoribbons ; Phonons</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (12)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</citedby><cites>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5053233$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xie, Zhong-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Yuan-Xiang</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><title>Applied physics letters</title><description>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</description><subject>Ambient temperature</subject><subject>Applied physics</subject><subject>Bias</subject><subject>Graphene</subject><subject>Molecular dynamics</subject><subject>Nanoribbons</subject><subject>Phonons</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcK0eczksSzFFxTc6DpkMomT0klqMhX896YPcO_qcrnfOZdzALjFaIYRo3M8a1BDCaVnYIIR5xXFWJyDCUKIVkw2-BJc5bwua1OgCegXcBON3sBkcww6GAsHa3odfB6giwmOvU3D4W5G77zRo48B-gC3yefRBztvU5H1toOfSW97GywsPjH5ti3gehfMXpGvwYXTm2xvTnMKPp4e35cv1ert-XW5WFWGSjpWRCKmLROdkARJKVsqheSYtdo4xjk3vCGidswKyjAzHcK1dIzwmqG6E7WmU3B39N2m-LWzeVTruEuhvFSkJqWMGhFRqPsjZVLMOVmnSpxBpx-FkdoXqbA6FVnYhyObjR8P8f8Hf8f0B6pt5-gv7bGBOQ</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Chen, Xue-Kun</creator><creator>Liu, Jun</creator><creator>Xie, Zhong-Xiang</creator><creator>Zhang, Yong</creator><creator>Deng, Yuan-Xiang</creator><creator>Chen, Ke-Qiu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180917</creationdate><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><author>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Applied physics</topic><topic>Bias</topic><topic>Graphene</topic><topic>Molecular dynamics</topic><topic>Nanoribbons</topic><topic>Phonons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xie, Zhong-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Yuan-Xiang</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xue-Kun</au><au>Liu, Jun</au><au>Xie, Zhong-Xiang</au><au>Zhang, Yong</au><au>Deng, Yuan-Xiang</au><au>Chen, Ke-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-17</date><risdate>2018</risdate><volume>113</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5053233</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-09, Vol.113 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5053233
source AIP Journals Complete; Alma/SFX Local Collection
subjects Ambient temperature
Applied physics
Bias
Graphene
Molecular dynamics
Nanoribbons
Phonons
title A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20resonance%20mechanism%20for%20thermal%20rectification%20in%20pristine/branched%20graphene%20nanoribbon%20junctions&rft.jtitle=Applied%20physics%20letters&rft.au=Chen,%20Xue-Kun&rft.date=2018-09-17&rft.volume=113&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5053233&rft_dat=%3Cproquest_scita%3E2421184028%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421184028&rft_id=info:pmid/&rfr_iscdi=true