A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions
Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-09, Vol.113 (12) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Chen, Xue-Kun Liu, Jun Xie, Zhong-Xiang Zhang, Yong Deng, Yuan-Xiang Chen, Ke-Qiu |
description | Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation. |
doi_str_mv | 10.1063/1.5053233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5053233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421184028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcK0eczksSzFFxTc6DpkMomT0klqMhX896YPcO_qcrnfOZdzALjFaIYRo3M8a1BDCaVnYIIR5xXFWJyDCUKIVkw2-BJc5bwua1OgCegXcBON3sBkcww6GAsHa3odfB6giwmOvU3D4W5G77zRo48B-gC3yefRBztvU5H1toOfSW97GywsPjH5ti3gehfMXpGvwYXTm2xvTnMKPp4e35cv1ert-XW5WFWGSjpWRCKmLROdkARJKVsqheSYtdo4xjk3vCGidswKyjAzHcK1dIzwmqG6E7WmU3B39N2m-LWzeVTruEuhvFSkJqWMGhFRqPsjZVLMOVmnSpxBpx-FkdoXqbA6FVnYhyObjR8P8f8Hf8f0B6pt5-gv7bGBOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421184028</pqid></control><display><type>article</type><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</creator><creatorcontrib>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</creatorcontrib><description>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5053233</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ambient temperature ; Applied physics ; Bias ; Graphene ; Molecular dynamics ; Nanoribbons ; Phonons</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (12)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</citedby><cites>FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5053233$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xie, Zhong-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Yuan-Xiang</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><title>Applied physics letters</title><description>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</description><subject>Ambient temperature</subject><subject>Applied physics</subject><subject>Bias</subject><subject>Graphene</subject><subject>Molecular dynamics</subject><subject>Nanoribbons</subject><subject>Phonons</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcK0eczksSzFFxTc6DpkMomT0klqMhX896YPcO_qcrnfOZdzALjFaIYRo3M8a1BDCaVnYIIR5xXFWJyDCUKIVkw2-BJc5bwua1OgCegXcBON3sBkcww6GAsHa3odfB6giwmOvU3D4W5G77zRo48B-gC3yefRBztvU5H1toOfSW97GywsPjH5ti3gehfMXpGvwYXTm2xvTnMKPp4e35cv1ert-XW5WFWGSjpWRCKmLROdkARJKVsqheSYtdo4xjk3vCGidswKyjAzHcK1dIzwmqG6E7WmU3B39N2m-LWzeVTruEuhvFSkJqWMGhFRqPsjZVLMOVmnSpxBpx-FkdoXqbA6FVnYhyObjR8P8f8Hf8f0B6pt5-gv7bGBOQ</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Chen, Xue-Kun</creator><creator>Liu, Jun</creator><creator>Xie, Zhong-Xiang</creator><creator>Zhang, Yong</creator><creator>Deng, Yuan-Xiang</creator><creator>Chen, Ke-Qiu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180917</creationdate><title>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</title><author>Chen, Xue-Kun ; Liu, Jun ; Xie, Zhong-Xiang ; Zhang, Yong ; Deng, Yuan-Xiang ; Chen, Ke-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2906ae68d8920999b3989716bacf6777c75284f6e83616cd0149f6274604d84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Applied physics</topic><topic>Bias</topic><topic>Graphene</topic><topic>Molecular dynamics</topic><topic>Nanoribbons</topic><topic>Phonons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xie, Zhong-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Yuan-Xiang</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xue-Kun</au><au>Liu, Jun</au><au>Xie, Zhong-Xiang</au><au>Zhang, Yong</au><au>Deng, Yuan-Xiang</au><au>Chen, Ke-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-17</date><risdate>2018</risdate><volume>113</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5053233</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-09, Vol.113 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5053233 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Ambient temperature Applied physics Bias Graphene Molecular dynamics Nanoribbons Phonons |
title | A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20resonance%20mechanism%20for%20thermal%20rectification%20in%20pristine/branched%20graphene%20nanoribbon%20junctions&rft.jtitle=Applied%20physics%20letters&rft.au=Chen,%20Xue-Kun&rft.date=2018-09-17&rft.volume=113&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5053233&rft_dat=%3Cproquest_scita%3E2421184028%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421184028&rft_id=info:pmid/&rfr_iscdi=true |