A highly accurate measurement of resonator Q-factor and resonance frequency

The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies, and it relies on the measurement of the resonator parameters. We present a method to determine the Q-factor and resonance frequency of microw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-11, Vol.89 (11), p.113903-113903
Hauptverfasser: Gyüre-Garami, B., Sági, O., Márkus, B. G., Simon, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113903
container_issue 11
container_start_page 113903
container_title Review of scientific instruments
container_volume 89
creator Gyüre-Garami, B.
Sági, O.
Márkus, B. G.
Simon, F.
description The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies, and it relies on the measurement of the resonator parameters. We present a method to determine the Q-factor and resonance frequency of microwave resonators which is conceptually simple but provides a sensitivity for these parameters which overcomes those of existing methods by an order of magnitude. The microwave resonator is placed in a feedback resonator setup, where the output of an amplifier is connected to its own input with the resonator as a bandpass filter. After reaching steady-state oscillation, the feedback circuit is disrupted by a fast microwave switch, and the transient signal, which emanates from the resonator, is detected using down-conversion. The Fourier transform of the resulting time-dependent signal yields directly the resonance profile of the resonator. Albeit the method being highly accurate, this comes with a conceptual simplicity, ease of implementation, and lower circuit cost. We compare existing methods for this type of measurement to explain the sensitivity of the present technique, and we also make a prediction for the ultimate accuracy for the resonator Q and f0 determination.
doi_str_mv 10.1063/1.5050592
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5050592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139303051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-18123fa2456cb3da6bacbbeb74a7d7bcd79f1d99abb9a1b4ec6ec21d9b29632e3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLlzbHMXzDgQh6Lk_Sp66jTTRpD_v2Zmx68GBySHj48U_4E3LO6JRRKW7ZdEbjVvyAjBktVJpLLg7JmFKRpTLPihE5CWFN45oxdkxGInImqByT53myaj5W7SYBYwYPPSYdQhg8dmj7xNWJx-As9M4nr2kNZnsBW-3H1mBSe_wa0JrNKTmqoQ14tj8n5P3-7m3xmC5fHp4W82VqRFb0KSsYFzXwbCaNFhVIDUZr1HkGeZVrU-WqZpVSoLUCpjM0Eg2PE82VFBzFhFztcj-9iy-HvuyaYLBtwaIbQslZpijnXBWRXv6hazd4G38XlVCCxiZYVNc7ZbwLwWNdfvqmA78pGS23DZes3Dcc7cU-cdAdVr_yp9IIbnYgmKaHvnH2n7RvHK-Czg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139303051</pqid></control><display><type>article</type><title>A highly accurate measurement of resonator Q-factor and resonance frequency</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gyüre-Garami, B. ; Sági, O. ; Márkus, B. G. ; Simon, F.</creator><creatorcontrib>Gyüre-Garami, B. ; Sági, O. ; Márkus, B. G. ; Simon, F.</creatorcontrib><description>The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies, and it relies on the measurement of the resonator parameters. We present a method to determine the Q-factor and resonance frequency of microwave resonators which is conceptually simple but provides a sensitivity for these parameters which overcomes those of existing methods by an order of magnitude. The microwave resonator is placed in a feedback resonator setup, where the output of an amplifier is connected to its own input with the resonator as a bandpass filter. After reaching steady-state oscillation, the feedback circuit is disrupted by a fast microwave switch, and the transient signal, which emanates from the resonator, is detected using down-conversion. The Fourier transform of the resulting time-dependent signal yields directly the resonance profile of the resonator. Albeit the method being highly accurate, this comes with a conceptual simplicity, ease of implementation, and lower circuit cost. We compare existing methods for this type of measurement to explain the sensitivity of the present technique, and we also make a prediction for the ultimate accuracy for the resonator Q and f0 determination.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5050592</identifier><identifier>PMID: 30501306</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bandpass filters ; Cavity resonators ; Feedback ; Feedback circuits ; Fourier transforms ; Magnetic permeability ; Magnetic resonance ; Parameter sensitivity ; Perturbation methods ; Resonators ; Scientific apparatus &amp; instruments ; Time dependence</subject><ispartof>Review of scientific instruments, 2018-11, Vol.89 (11), p.113903-113903</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-18123fa2456cb3da6bacbbeb74a7d7bcd79f1d99abb9a1b4ec6ec21d9b29632e3</citedby><cites>FETCH-LOGICAL-c348t-18123fa2456cb3da6bacbbeb74a7d7bcd79f1d99abb9a1b4ec6ec21d9b29632e3</cites><orcidid>0000-0003-1472-0482 ; 0000000314720482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5050592$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyüre-Garami, B.</creatorcontrib><creatorcontrib>Sági, O.</creatorcontrib><creatorcontrib>Márkus, B. G.</creatorcontrib><creatorcontrib>Simon, F.</creatorcontrib><title>A highly accurate measurement of resonator Q-factor and resonance frequency</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies, and it relies on the measurement of the resonator parameters. We present a method to determine the Q-factor and resonance frequency of microwave resonators which is conceptually simple but provides a sensitivity for these parameters which overcomes those of existing methods by an order of magnitude. The microwave resonator is placed in a feedback resonator setup, where the output of an amplifier is connected to its own input with the resonator as a bandpass filter. After reaching steady-state oscillation, the feedback circuit is disrupted by a fast microwave switch, and the transient signal, which emanates from the resonator, is detected using down-conversion. The Fourier transform of the resulting time-dependent signal yields directly the resonance profile of the resonator. Albeit the method being highly accurate, this comes with a conceptual simplicity, ease of implementation, and lower circuit cost. We compare existing methods for this type of measurement to explain the sensitivity of the present technique, and we also make a prediction for the ultimate accuracy for the resonator Q and f0 determination.</description><subject>Bandpass filters</subject><subject>Cavity resonators</subject><subject>Feedback</subject><subject>Feedback circuits</subject><subject>Fourier transforms</subject><subject>Magnetic permeability</subject><subject>Magnetic resonance</subject><subject>Parameter sensitivity</subject><subject>Perturbation methods</subject><subject>Resonators</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Time dependence</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLlzbHMXzDgQh6Lk_Sp66jTTRpD_v2Zmx68GBySHj48U_4E3LO6JRRKW7ZdEbjVvyAjBktVJpLLg7JmFKRpTLPihE5CWFN45oxdkxGInImqByT53myaj5W7SYBYwYPPSYdQhg8dmj7xNWJx-As9M4nr2kNZnsBW-3H1mBSe_wa0JrNKTmqoQ14tj8n5P3-7m3xmC5fHp4W82VqRFb0KSsYFzXwbCaNFhVIDUZr1HkGeZVrU-WqZpVSoLUCpjM0Eg2PE82VFBzFhFztcj-9iy-HvuyaYLBtwaIbQslZpijnXBWRXv6hazd4G38XlVCCxiZYVNc7ZbwLwWNdfvqmA78pGS23DZes3Dcc7cU-cdAdVr_yp9IIbnYgmKaHvnH2n7RvHK-Czg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Gyüre-Garami, B.</creator><creator>Sági, O.</creator><creator>Márkus, B. G.</creator><creator>Simon, F.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1472-0482</orcidid><orcidid>https://orcid.org/0000000314720482</orcidid></search><sort><creationdate>201811</creationdate><title>A highly accurate measurement of resonator Q-factor and resonance frequency</title><author>Gyüre-Garami, B. ; Sági, O. ; Márkus, B. G. ; Simon, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-18123fa2456cb3da6bacbbeb74a7d7bcd79f1d99abb9a1b4ec6ec21d9b29632e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandpass filters</topic><topic>Cavity resonators</topic><topic>Feedback</topic><topic>Feedback circuits</topic><topic>Fourier transforms</topic><topic>Magnetic permeability</topic><topic>Magnetic resonance</topic><topic>Parameter sensitivity</topic><topic>Perturbation methods</topic><topic>Resonators</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyüre-Garami, B.</creatorcontrib><creatorcontrib>Sági, O.</creatorcontrib><creatorcontrib>Márkus, B. G.</creatorcontrib><creatorcontrib>Simon, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyüre-Garami, B.</au><au>Sági, O.</au><au>Márkus, B. G.</au><au>Simon, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly accurate measurement of resonator Q-factor and resonance frequency</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-11</date><risdate>2018</risdate><volume>89</volume><issue>11</issue><spage>113903</spage><epage>113903</epage><pages>113903-113903</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies, and it relies on the measurement of the resonator parameters. We present a method to determine the Q-factor and resonance frequency of microwave resonators which is conceptually simple but provides a sensitivity for these parameters which overcomes those of existing methods by an order of magnitude. The microwave resonator is placed in a feedback resonator setup, where the output of an amplifier is connected to its own input with the resonator as a bandpass filter. After reaching steady-state oscillation, the feedback circuit is disrupted by a fast microwave switch, and the transient signal, which emanates from the resonator, is detected using down-conversion. The Fourier transform of the resulting time-dependent signal yields directly the resonance profile of the resonator. Albeit the method being highly accurate, this comes with a conceptual simplicity, ease of implementation, and lower circuit cost. We compare existing methods for this type of measurement to explain the sensitivity of the present technique, and we also make a prediction for the ultimate accuracy for the resonator Q and f0 determination.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30501306</pmid><doi>10.1063/1.5050592</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1472-0482</orcidid><orcidid>https://orcid.org/0000000314720482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-11, Vol.89 (11), p.113903-113903
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_5050592
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bandpass filters
Cavity resonators
Feedback
Feedback circuits
Fourier transforms
Magnetic permeability
Magnetic resonance
Parameter sensitivity
Perturbation methods
Resonators
Scientific apparatus & instruments
Time dependence
title A highly accurate measurement of resonator Q-factor and resonance frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20accurate%20measurement%20of%20resonator%20Q-factor%20and%20resonance%20frequency&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Gy%C3%BCre-Garami,%20B.&rft.date=2018-11&rft.volume=89&rft.issue=11&rft.spage=113903&rft.epage=113903&rft.pages=113903-113903&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5050592&rft_dat=%3Cproquest_scita%3E2139303051%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139303051&rft_id=info:pmid/30501306&rfr_iscdi=true