Angular instability in high optical power suspended cavities

Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-12, Vol.89 (12), p.124503-124503
Hauptverfasser: Liu, J., Bossilkov, V., Blair, C., Zhao, C., Ju, L., Blair, D. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124503
container_issue 12
container_start_page 124503
container_title Review of scientific instruments
container_volume 89
creator Liu, J.
Bossilkov, V.
Blair, C.
Zhao, C.
Ju, L.
Blair, D. G.
description Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.
doi_str_mv 10.1063/1.5049508
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5049508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162774903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipsPB9-AFLyo0JnHtgEvY_gEAy96Lv8m6ZbRtTVJlb17MzY9eDCX5PDhS_ghdEHwhOCM3ZGJwFwKXBygMcGFTPOMskM0xpjxNMt5MUIn3q9wPIKQYzRiWEgpCjpG99N2MTTgEtv6AJVtbNjEd7K0i2XS9cEqaJK--zIu8YPvTauNThR82mCNP0NHNTTenO_vU_T--PA2e07nr08vs-k8VZzwkOaKYCIULTSrpGHAgAuay0xlQkuJmQGjOcGVFJLrjNICtg54zUBBrSk7Rde7bu-6j8H4UK6tV6ZpoDXd4EtKMprnPKYivfpDV93g2vi7qETcKMpt8GanlOu8d6Yue2fX4DYlweV20pKU-0mjvdwXh2pt9K_82TCC2x3wygYItmv_qX0DkTZ8fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159506272</pqid></control><display><type>article</type><title>Angular instability in high optical power suspended cavities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</creator><creatorcontrib>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</creatorcontrib><description>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5049508</identifier><identifier>PMID: 30599582</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherent light ; Control stability ; Control systems ; Detectors ; Fiber optic networks ; Gravitation ; Gravitational waves ; Holes ; Optical feedback ; Pressure effects ; Radiation pressure ; Scientific apparatus &amp; instruments ; Sensitivity enhancement ; Sensors ; Transfer functions</subject><ispartof>Review of scientific instruments, 2018-12, Vol.89 (12), p.124503-124503</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</citedby><cites>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</cites><orcidid>0000-0001-6726-3268 ; 0000000167263268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5049508$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30599582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Bossilkov, V.</creatorcontrib><creatorcontrib>Blair, C.</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><creatorcontrib>Ju, L.</creatorcontrib><creatorcontrib>Blair, D. G.</creatorcontrib><title>Angular instability in high optical power suspended cavities</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</description><subject>Coherent light</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Detectors</subject><subject>Fiber optic networks</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Holes</subject><subject>Optical feedback</subject><subject>Pressure effects</subject><subject>Radiation pressure</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Transfer functions</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipsPB9-AFLyo0JnHtgEvY_gEAy96Lv8m6ZbRtTVJlb17MzY9eDCX5PDhS_ghdEHwhOCM3ZGJwFwKXBygMcGFTPOMskM0xpjxNMt5MUIn3q9wPIKQYzRiWEgpCjpG99N2MTTgEtv6AJVtbNjEd7K0i2XS9cEqaJK--zIu8YPvTauNThR82mCNP0NHNTTenO_vU_T--PA2e07nr08vs-k8VZzwkOaKYCIULTSrpGHAgAuay0xlQkuJmQGjOcGVFJLrjNICtg54zUBBrSk7Rde7bu-6j8H4UK6tV6ZpoDXd4EtKMprnPKYivfpDV93g2vi7qETcKMpt8GanlOu8d6Yue2fX4DYlweV20pKU-0mjvdwXh2pt9K_82TCC2x3wygYItmv_qX0DkTZ8fg</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Liu, J.</creator><creator>Bossilkov, V.</creator><creator>Blair, C.</creator><creator>Zhao, C.</creator><creator>Ju, L.</creator><creator>Blair, D. G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6726-3268</orcidid><orcidid>https://orcid.org/0000000167263268</orcidid></search><sort><creationdate>201812</creationdate><title>Angular instability in high optical power suspended cavities</title><author>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coherent light</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Detectors</topic><topic>Fiber optic networks</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Holes</topic><topic>Optical feedback</topic><topic>Pressure effects</topic><topic>Radiation pressure</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Bossilkov, V.</creatorcontrib><creatorcontrib>Blair, C.</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><creatorcontrib>Ju, L.</creatorcontrib><creatorcontrib>Blair, D. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.</au><au>Bossilkov, V.</au><au>Blair, C.</au><au>Zhao, C.</au><au>Ju, L.</au><au>Blair, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular instability in high optical power suspended cavities</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-12</date><risdate>2018</risdate><volume>89</volume><issue>12</issue><spage>124503</spage><epage>124503</epage><pages>124503-124503</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30599582</pmid><doi>10.1063/1.5049508</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6726-3268</orcidid><orcidid>https://orcid.org/0000000167263268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-12, Vol.89 (12), p.124503-124503
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_5049508
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coherent light
Control stability
Control systems
Detectors
Fiber optic networks
Gravitation
Gravitational waves
Holes
Optical feedback
Pressure effects
Radiation pressure
Scientific apparatus & instruments
Sensitivity enhancement
Sensors
Transfer functions
title Angular instability in high optical power suspended cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20instability%20in%20high%20optical%20power%20suspended%20cavities&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20J.&rft.date=2018-12&rft.volume=89&rft.issue=12&rft.spage=124503&rft.epage=124503&rft.pages=124503-124503&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5049508&rft_dat=%3Cproquest_scita%3E2162774903%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159506272&rft_id=info:pmid/30599582&rfr_iscdi=true