Angular instability in high optical power suspended cavities
Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation press...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-12, Vol.89 (12), p.124503-124503 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124503 |
---|---|
container_issue | 12 |
container_start_page | 124503 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Liu, J. Bossilkov, V. Blair, C. Zhao, C. Ju, L. Blair, D. G. |
description | Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power. |
doi_str_mv | 10.1063/1.5049508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5049508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162774903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipsPB9-AFLyo0JnHtgEvY_gEAy96Lv8m6ZbRtTVJlb17MzY9eDCX5PDhS_ghdEHwhOCM3ZGJwFwKXBygMcGFTPOMskM0xpjxNMt5MUIn3q9wPIKQYzRiWEgpCjpG99N2MTTgEtv6AJVtbNjEd7K0i2XS9cEqaJK--zIu8YPvTauNThR82mCNP0NHNTTenO_vU_T--PA2e07nr08vs-k8VZzwkOaKYCIULTSrpGHAgAuay0xlQkuJmQGjOcGVFJLrjNICtg54zUBBrSk7Rde7bu-6j8H4UK6tV6ZpoDXd4EtKMprnPKYivfpDV93g2vi7qETcKMpt8GanlOu8d6Yue2fX4DYlweV20pKU-0mjvdwXh2pt9K_82TCC2x3wygYItmv_qX0DkTZ8fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159506272</pqid></control><display><type>article</type><title>Angular instability in high optical power suspended cavities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</creator><creatorcontrib>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</creatorcontrib><description>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5049508</identifier><identifier>PMID: 30599582</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherent light ; Control stability ; Control systems ; Detectors ; Fiber optic networks ; Gravitation ; Gravitational waves ; Holes ; Optical feedback ; Pressure effects ; Radiation pressure ; Scientific apparatus & instruments ; Sensitivity enhancement ; Sensors ; Transfer functions</subject><ispartof>Review of scientific instruments, 2018-12, Vol.89 (12), p.124503-124503</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</citedby><cites>FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</cites><orcidid>0000-0001-6726-3268 ; 0000000167263268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5049508$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30599582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Bossilkov, V.</creatorcontrib><creatorcontrib>Blair, C.</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><creatorcontrib>Ju, L.</creatorcontrib><creatorcontrib>Blair, D. G.</creatorcontrib><title>Angular instability in high optical power suspended cavities</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</description><subject>Coherent light</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Detectors</subject><subject>Fiber optic networks</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Holes</subject><subject>Optical feedback</subject><subject>Pressure effects</subject><subject>Radiation pressure</subject><subject>Scientific apparatus & instruments</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Transfer functions</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipsPB9-AFLyo0JnHtgEvY_gEAy96Lv8m6ZbRtTVJlb17MzY9eDCX5PDhS_ghdEHwhOCM3ZGJwFwKXBygMcGFTPOMskM0xpjxNMt5MUIn3q9wPIKQYzRiWEgpCjpG99N2MTTgEtv6AJVtbNjEd7K0i2XS9cEqaJK--zIu8YPvTauNThR82mCNP0NHNTTenO_vU_T--PA2e07nr08vs-k8VZzwkOaKYCIULTSrpGHAgAuay0xlQkuJmQGjOcGVFJLrjNICtg54zUBBrSk7Rde7bu-6j8H4UK6tV6ZpoDXd4EtKMprnPKYivfpDV93g2vi7qETcKMpt8GanlOu8d6Yue2fX4DYlweV20pKU-0mjvdwXh2pt9K_82TCC2x3wygYItmv_qX0DkTZ8fg</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Liu, J.</creator><creator>Bossilkov, V.</creator><creator>Blair, C.</creator><creator>Zhao, C.</creator><creator>Ju, L.</creator><creator>Blair, D. G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6726-3268</orcidid><orcidid>https://orcid.org/0000000167263268</orcidid></search><sort><creationdate>201812</creationdate><title>Angular instability in high optical power suspended cavities</title><author>Liu, J. ; Bossilkov, V. ; Blair, C. ; Zhao, C. ; Ju, L. ; Blair, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7c1015c28d3b9e3a3a452796c65d9903eaed410b9594d6228a3b9ea4f3acafd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coherent light</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Detectors</topic><topic>Fiber optic networks</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Holes</topic><topic>Optical feedback</topic><topic>Pressure effects</topic><topic>Radiation pressure</topic><topic>Scientific apparatus & instruments</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Bossilkov, V.</creatorcontrib><creatorcontrib>Blair, C.</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><creatorcontrib>Ju, L.</creatorcontrib><creatorcontrib>Blair, D. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.</au><au>Bossilkov, V.</au><au>Blair, C.</au><au>Zhao, C.</au><au>Ju, L.</au><au>Blair, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular instability in high optical power suspended cavities</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-12</date><risdate>2018</risdate><volume>89</volume><issue>12</issue><spage>124503</spage><epage>124503</epage><pages>124503-124503</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Advanced gravitational wave detectors use suspended test masses to form optical resonant cavities for enhancing the detector sensitivity. These cavities store hundreds of kilowatts of coherent light and even higher optical power for future detectors. With such high optical power, the radiation pressure effect inside the cavity creates a sufficiently strong coupling between test masses whose dynamics are significantly altered. The dynamics of two independent nearly free masses become a coupled mechanical resonator system. The transfer function of the local control system used for controlling the test masses is modified by the radiation pressure effect. The changes in the transfer function of the local control systems can result in a new type of angular instability which occurs at only 1.3% of the Sidles-Sigg instability threshold power. We report the experimental results on a 74 m suspended cavity with a few kilowatts of circulating power, for which the power to mass ratio is comparable to the current Advanced LIGO. The radiation pressure effect on the test masses behaves like an additional optical feedback with respect to the local angular control, potentially making the mirror control system unstable. When the local angular control system is optimised for maximum stability margin, the instability threshold power increases from 4 kW to 29 kW. The system behaviour is consistent with our simulation, and the power dependent evolution of both the cavity soft and hard mode is observed. We show that this phenomenon is likely to significantly affect the proposed gravitational wave detectors that require very high optical power.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30599582</pmid><doi>10.1063/1.5049508</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6726-3268</orcidid><orcidid>https://orcid.org/0000000167263268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-12, Vol.89 (12), p.124503-124503 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5049508 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coherent light Control stability Control systems Detectors Fiber optic networks Gravitation Gravitational waves Holes Optical feedback Pressure effects Radiation pressure Scientific apparatus & instruments Sensitivity enhancement Sensors Transfer functions |
title | Angular instability in high optical power suspended cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20instability%20in%20high%20optical%20power%20suspended%20cavities&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20J.&rft.date=2018-12&rft.volume=89&rft.issue=12&rft.spage=124503&rft.epage=124503&rft.pages=124503-124503&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5049508&rft_dat=%3Cproquest_scita%3E2162774903%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159506272&rft_id=info:pmid/30599582&rfr_iscdi=true |