Causality and topology in sub-Lorentzian geometry
Suppose that (M, H, g) is a sub-Lorentzian manifold, and let f: M → M be a bijection such that f and f−1 preserve timelike future directed curves. It is proved that under some mild assumptions made on (M, H, g), f is a homeomorphism. The presented result is a generalization of the known result in sp...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-01, Vol.60 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Grochowski, Marek |
description | Suppose that (M, H, g) is a sub-Lorentzian manifold, and let f: M → M be a bijection such that f and f−1 preserve timelike future directed curves. It is proved that under some mild assumptions made on (M, H, g), f is a homeomorphism. The presented result is a generalization of the known result in spacetime geometry obtained by Malament [J. Math. Phys. 18(7), 1399–1404 (1977)]. |
doi_str_mv | 10.1063/1.5047095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5047095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167494820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a58a593936834e07543e94e0cc32c0d60ae5e81cd87482679502d0f01c519e153</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elh60w-NslRilWh4EXPIWazZUu7WZOssP56V1rw7mkG5pkZeAm5RlggVOweFwK4BC1OyAxB6VJWQp2SGQClJeVKnZOLlLYAiIrzGcGlHZLdtXksbFcXOfRhFzZj0XZFGj7KdYi-y9-t7YqND3uf43hJzhq7S_7qWOfkffX4tnwu169PL8uHdekYlbm0QlmhmWaVYtyDFJx5PTVuGjuoK7BeeIWuVpIrWkktgNbQADqB2qNgc3JzuNvH8Dn4lM02DLGbXhqKleR6WoNJ3R6UiyGl6BvTx3Zv42gQzG8iBs0xkcneHWxybba5Dd3_8FeIf9D0dcN-AC7GbKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167494820</pqid></control><display><type>article</type><title>Causality and topology in sub-Lorentzian geometry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Grochowski, Marek</creator><creatorcontrib>Grochowski, Marek</creatorcontrib><description>Suppose that (M, H, g) is a sub-Lorentzian manifold, and let f: M → M be a bijection such that f and f−1 preserve timelike future directed curves. It is proved that under some mild assumptions made on (M, H, g), f is a homeomorphism. The presented result is a generalization of the known result in spacetime geometry obtained by Malament [J. Math. Phys. 18(7), 1399–1404 (1977)].</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5047095</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Manifolds (mathematics) ; Physics ; Topology</subject><ispartof>Journal of mathematical physics, 2019-01, Vol.60 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a58a593936834e07543e94e0cc32c0d60ae5e81cd87482679502d0f01c519e153</citedby><cites>FETCH-LOGICAL-c327t-a58a593936834e07543e94e0cc32c0d60ae5e81cd87482679502d0f01c519e153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5047095$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27911,27912,76141</link.rule.ids></links><search><creatorcontrib>Grochowski, Marek</creatorcontrib><title>Causality and topology in sub-Lorentzian geometry</title><title>Journal of mathematical physics</title><description>Suppose that (M, H, g) is a sub-Lorentzian manifold, and let f: M → M be a bijection such that f and f−1 preserve timelike future directed curves. It is proved that under some mild assumptions made on (M, H, g), f is a homeomorphism. The presented result is a generalization of the known result in spacetime geometry obtained by Malament [J. Math. Phys. 18(7), 1399–1404 (1977)].</description><subject>Manifolds (mathematics)</subject><subject>Physics</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elh60w-NslRilWh4EXPIWazZUu7WZOssP56V1rw7mkG5pkZeAm5RlggVOweFwK4BC1OyAxB6VJWQp2SGQClJeVKnZOLlLYAiIrzGcGlHZLdtXksbFcXOfRhFzZj0XZFGj7KdYi-y9-t7YqND3uf43hJzhq7S_7qWOfkffX4tnwu169PL8uHdekYlbm0QlmhmWaVYtyDFJx5PTVuGjuoK7BeeIWuVpIrWkktgNbQADqB2qNgc3JzuNvH8Dn4lM02DLGbXhqKleR6WoNJ3R6UiyGl6BvTx3Zv42gQzG8iBs0xkcneHWxybba5Dd3_8FeIf9D0dcN-AC7GbKM</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Grochowski, Marek</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Causality and topology in sub-Lorentzian geometry</title><author>Grochowski, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a58a593936834e07543e94e0cc32c0d60ae5e81cd87482679502d0f01c519e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Manifolds (mathematics)</topic><topic>Physics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grochowski, Marek</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grochowski, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causality and topology in sub-Lorentzian geometry</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Suppose that (M, H, g) is a sub-Lorentzian manifold, and let f: M → M be a bijection such that f and f−1 preserve timelike future directed curves. It is proved that under some mild assumptions made on (M, H, g), f is a homeomorphism. The presented result is a generalization of the known result in spacetime geometry obtained by Malament [J. Math. Phys. 18(7), 1399–1404 (1977)].</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5047095</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-01, Vol.60 (1) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5047095 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Manifolds (mathematics) Physics Topology |
title | Causality and topology in sub-Lorentzian geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causality%20and%20topology%20in%20sub-Lorentzian%20geometry&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Grochowski,%20Marek&rft.date=2019-01&rft.volume=60&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5047095&rft_dat=%3Cproquest_scita%3E2167494820%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167494820&rft_id=info:pmid/&rfr_iscdi=true |