Multiscale analysis of head-on quenching premixed turbulent flames
Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothe...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2018-10, Vol.30 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 30 |
creator | Ahmed, Umair Doan, Nguyen Anh Khoa Lai, Jiawei Klein, Markus Chakraborty, Nilanjan Swaminathan, Nedunchezhian |
description | Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI. |
doi_str_mv | 10.1063/1.5047061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5047061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117015938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</originalsourceid><addsrcrecordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx3ubNkmXOviCETe6Dml663ToyyQV59_bYQbcu7p38XE4HMYuERYIgt_iIoNUgsAjNkNQeSyFEMe7X0IsBMdTdub9BgB4nogZu38dm1B7axqKTGeara991FfRmkwZ9130NVJn13X3GQ2O2vqHyiiMrhgb6kJUNaYlf85OKtN4ujjcOft4fHhfPsert6eX5d0qtmmiQlxKlVMhVQa8JEuUSEiVpcxySDmVlbQlCQM8McgrIwqec1ukiKooVIJFwufsap87uH6q5YPe9KObOnudIErALOdqUtd7ZV3vvaNKD65ujdtqBL2bSKM-TDTZm731tg4m1H33P_zduz-oh7Liv4_jdJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117015938</pqid></control><display><type>article</type><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</creator><creatorcontrib>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</creatorcontrib><description>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5047061</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Bandpass filters ; Computational fluid dynamics ; Computer simulation ; Direct numerical simulation ; Fluid dynamics ; Fluid flow ; Multiscale analysis ; Organic chemistry ; Physics ; Premixed flames ; Quenching ; Strain rate ; Stretching ; Turbulence ; Turbulent flames ; Vortices ; Vorticity</subject><ispartof>Physics of fluids (1994), 2018-10, Vol.30 (10)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</citedby><cites>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</cites><orcidid>0000-0002-9890-3173 ; 0000-0001-9409-5669 ; 0000-0003-3338-0698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27922,27923</link.rule.ids></links><search><creatorcontrib>Ahmed, Umair</creatorcontrib><creatorcontrib>Doan, Nguyen Anh Khoa</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Klein, Markus</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><creatorcontrib>Swaminathan, Nedunchezhian</creatorcontrib><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><title>Physics of fluids (1994)</title><description>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</description><subject>Aerodynamics</subject><subject>Bandpass filters</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Multiscale analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Premixed flames</subject><subject>Quenching</subject><subject>Strain rate</subject><subject>Stretching</subject><subject>Turbulence</subject><subject>Turbulent flames</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx3ubNkmXOviCETe6Dml663ToyyQV59_bYQbcu7p38XE4HMYuERYIgt_iIoNUgsAjNkNQeSyFEMe7X0IsBMdTdub9BgB4nogZu38dm1B7axqKTGeara991FfRmkwZ9130NVJn13X3GQ2O2vqHyiiMrhgb6kJUNaYlf85OKtN4ujjcOft4fHhfPsert6eX5d0qtmmiQlxKlVMhVQa8JEuUSEiVpcxySDmVlbQlCQM8McgrIwqec1ukiKooVIJFwufsap87uH6q5YPe9KObOnudIErALOdqUtd7ZV3vvaNKD65ujdtqBL2bSKM-TDTZm731tg4m1H33P_zduz-oh7Liv4_jdJU</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ahmed, Umair</creator><creator>Doan, Nguyen Anh Khoa</creator><creator>Lai, Jiawei</creator><creator>Klein, Markus</creator><creator>Chakraborty, Nilanjan</creator><creator>Swaminathan, Nedunchezhian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0001-9409-5669</orcidid><orcidid>https://orcid.org/0000-0003-3338-0698</orcidid></search><sort><creationdate>201810</creationdate><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><author>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Bandpass filters</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Multiscale analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Premixed flames</topic><topic>Quenching</topic><topic>Strain rate</topic><topic>Stretching</topic><topic>Turbulence</topic><topic>Turbulent flames</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Umair</creatorcontrib><creatorcontrib>Doan, Nguyen Anh Khoa</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Klein, Markus</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><creatorcontrib>Swaminathan, Nedunchezhian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Umair</au><au>Doan, Nguyen Anh Khoa</au><au>Lai, Jiawei</au><au>Klein, Markus</au><au>Chakraborty, Nilanjan</au><au>Swaminathan, Nedunchezhian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale analysis of head-on quenching premixed turbulent flames</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5047061</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0001-9409-5669</orcidid><orcidid>https://orcid.org/0000-0003-3338-0698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2018-10, Vol.30 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5047061 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aerodynamics Bandpass filters Computational fluid dynamics Computer simulation Direct numerical simulation Fluid dynamics Fluid flow Multiscale analysis Organic chemistry Physics Premixed flames Quenching Strain rate Stretching Turbulence Turbulent flames Vortices Vorticity |
title | Multiscale analysis of head-on quenching premixed turbulent flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20analysis%20of%20head-on%20quenching%20premixed%20turbulent%20flames&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ahmed,%20Umair&rft.date=2018-10&rft.volume=30&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5047061&rft_dat=%3Cproquest_scita%3E2117015938%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117015938&rft_id=info:pmid/&rfr_iscdi=true |