Multiscale analysis of head-on quenching premixed turbulent flames

Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2018-10, Vol.30 (10)
Hauptverfasser: Ahmed, Umair, Doan, Nguyen Anh Khoa, Lai, Jiawei, Klein, Markus, Chakraborty, Nilanjan, Swaminathan, Nedunchezhian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of fluids (1994)
container_volume 30
creator Ahmed, Umair
Doan, Nguyen Anh Khoa
Lai, Jiawei
Klein, Markus
Chakraborty, Nilanjan
Swaminathan, Nedunchezhian
description Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.
doi_str_mv 10.1063/1.5047061
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5047061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117015938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</originalsourceid><addsrcrecordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx3ubNkmXOviCETe6Dml663ToyyQV59_bYQbcu7p38XE4HMYuERYIgt_iIoNUgsAjNkNQeSyFEMe7X0IsBMdTdub9BgB4nogZu38dm1B7axqKTGeara991FfRmkwZ9130NVJn13X3GQ2O2vqHyiiMrhgb6kJUNaYlf85OKtN4ujjcOft4fHhfPsert6eX5d0qtmmiQlxKlVMhVQa8JEuUSEiVpcxySDmVlbQlCQM8McgrIwqec1ukiKooVIJFwufsap87uH6q5YPe9KObOnudIErALOdqUtd7ZV3vvaNKD65ujdtqBL2bSKM-TDTZm731tg4m1H33P_zduz-oh7Liv4_jdJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117015938</pqid></control><display><type>article</type><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</creator><creatorcontrib>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</creatorcontrib><description>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5047061</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Bandpass filters ; Computational fluid dynamics ; Computer simulation ; Direct numerical simulation ; Fluid dynamics ; Fluid flow ; Multiscale analysis ; Organic chemistry ; Physics ; Premixed flames ; Quenching ; Strain rate ; Stretching ; Turbulence ; Turbulent flames ; Vortices ; Vorticity</subject><ispartof>Physics of fluids (1994), 2018-10, Vol.30 (10)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</citedby><cites>FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</cites><orcidid>0000-0002-9890-3173 ; 0000-0001-9409-5669 ; 0000-0003-3338-0698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27922,27923</link.rule.ids></links><search><creatorcontrib>Ahmed, Umair</creatorcontrib><creatorcontrib>Doan, Nguyen Anh Khoa</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Klein, Markus</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><creatorcontrib>Swaminathan, Nedunchezhian</creatorcontrib><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><title>Physics of fluids (1994)</title><description>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</description><subject>Aerodynamics</subject><subject>Bandpass filters</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Multiscale analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Premixed flames</subject><subject>Quenching</subject><subject>Strain rate</subject><subject>Stretching</subject><subject>Turbulence</subject><subject>Turbulent flames</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx3ubNkmXOviCETe6Dml663ToyyQV59_bYQbcu7p38XE4HMYuERYIgt_iIoNUgsAjNkNQeSyFEMe7X0IsBMdTdub9BgB4nogZu38dm1B7axqKTGeara991FfRmkwZ9130NVJn13X3GQ2O2vqHyiiMrhgb6kJUNaYlf85OKtN4ujjcOft4fHhfPsert6eX5d0qtmmiQlxKlVMhVQa8JEuUSEiVpcxySDmVlbQlCQM8McgrIwqec1ukiKooVIJFwufsap87uH6q5YPe9KObOnudIErALOdqUtd7ZV3vvaNKD65ujdtqBL2bSKM-TDTZm731tg4m1H33P_zduz-oh7Liv4_jdJU</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ahmed, Umair</creator><creator>Doan, Nguyen Anh Khoa</creator><creator>Lai, Jiawei</creator><creator>Klein, Markus</creator><creator>Chakraborty, Nilanjan</creator><creator>Swaminathan, Nedunchezhian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0001-9409-5669</orcidid><orcidid>https://orcid.org/0000-0003-3338-0698</orcidid></search><sort><creationdate>201810</creationdate><title>Multiscale analysis of head-on quenching premixed turbulent flames</title><author>Ahmed, Umair ; Doan, Nguyen Anh Khoa ; Lai, Jiawei ; Klein, Markus ; Chakraborty, Nilanjan ; Swaminathan, Nedunchezhian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d789eb78503decee27048ce5c3043edf7cde6a032a13fa6b393cb4118bb821b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Bandpass filters</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Multiscale analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Premixed flames</topic><topic>Quenching</topic><topic>Strain rate</topic><topic>Stretching</topic><topic>Turbulence</topic><topic>Turbulent flames</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Umair</creatorcontrib><creatorcontrib>Doan, Nguyen Anh Khoa</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Klein, Markus</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><creatorcontrib>Swaminathan, Nedunchezhian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Umair</au><au>Doan, Nguyen Anh Khoa</au><au>Lai, Jiawei</au><au>Klein, Markus</au><au>Chakraborty, Nilanjan</au><au>Swaminathan, Nedunchezhian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale analysis of head-on quenching premixed turbulent flames</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanisms have been analyzed. A bandpass filtering technique is utilised to analyze the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to the flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in FWI.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5047061</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0001-9409-5669</orcidid><orcidid>https://orcid.org/0000-0003-3338-0698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2018-10, Vol.30 (10)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_5047061
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aerodynamics
Bandpass filters
Computational fluid dynamics
Computer simulation
Direct numerical simulation
Fluid dynamics
Fluid flow
Multiscale analysis
Organic chemistry
Physics
Premixed flames
Quenching
Strain rate
Stretching
Turbulence
Turbulent flames
Vortices
Vorticity
title Multiscale analysis of head-on quenching premixed turbulent flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20analysis%20of%20head-on%20quenching%20premixed%20turbulent%20flames&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ahmed,%20Umair&rft.date=2018-10&rft.volume=30&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5047061&rft_dat=%3Cproquest_scita%3E2117015938%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117015938&rft_id=info:pmid/&rfr_iscdi=true