Investigation for the structural stress of SiO2 thin films and its distribution on the large-wafer created by plasma enhanced chemical vapor deposition
For a multilayered configuration of SiO2 film created by plasma enhanced chemical vapor deposition (PECVD), the thermal stress and growth-caused stress are two intrinsic stresses. In this work, based on the interactions of all the layers of film, a nonlinearly distributed structural stress over a la...
Gespeichert in:
Veröffentlicht in: | AIP advances 2018-08, Vol.8 (8), p.085217-085217-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a multilayered configuration of SiO2 film created by plasma enhanced chemical vapor deposition (PECVD), the thermal stress and growth-caused stress are two intrinsic stresses. In this work, based on the interactions of all the layers of film, a nonlinearly distributed structural stress over a large substrate is found. The numerical simulations for the nonlinear distribution of the structural stress and the uniform distributions of the two intrinsic stresses are carried out. As a result, the tensile structural stress decreases by ∼4x105MPa from center to edge of a 6” silicon wafer and the compressive growth-caused stress increases by ∼5x105MPa corresponding to the growth-rate increase of 40nm/s, which matches a ∼120MPa distribution of residual compressive stress obtained with in-situ measurements of film samples. In simulations, it is also discovered that the initial curvature of substrate has an impressive influence on the later grown film. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5045516 |