Honking noise contribution to road traffic noise prediction
The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honkin...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1982 |
creator | Guarnaccia, Claudio Singh, Daljeet Quartieri, Joseph Nigam, S. P. Kumar, Maneek Mastorakis, Nikos E. |
description | The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements. |
doi_str_mv | 10.1063/1.5045448 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5045448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087555065</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-c87f4a52b1ac04d7871a2a238cf33922e3933d3e3dab27ac5e92660fbf8be7f23</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCtbRhW9QcCd0zD0prmRwHGHAjYK7kOYiGbWpSSr49k6ZgjtXZ_Od_xx-AC4RXCLIyQ1aMkgZpfIIVIgx1AiO-DGoIGxpgyl5PQVnOe8gxK0QsgK3m9i_h_6t7mPIrjaxLyl0Ywmxr0usU9S2Lkl7H8xMhuRsMBM4Bydef2R3Mc8FeFnfP682zfbp4XF1t20GLGVpjBSeaoY7pA2kVkiBNNaYSOMJaTF2pCXEEkes7rDQhrkWcw5952XnhMdkAa4OuUOKX6PLRe3imPr9SYWhFIwxyNleXR9UNqHo6T81pPCp04_6jkkhNRejBuv_wwiqqcm_BfIL4CplEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2087555065</pqid></control><display><type>conference_proceeding</type><title>Honking noise contribution to road traffic noise prediction</title><source>American Institute of Physics (AIP) Journals</source><creator>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E.</creator><contributor>Bardis, Nikos</contributor><creatorcontrib>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E. ; Bardis, Nikos</creatorcontrib><description>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5045448</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Intersections ; Noise prediction ; Traffic jams ; Traffic models ; Urban areas</subject><ispartof>AIP conference proceedings, 2018, Vol.1982 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5045448$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Bardis, Nikos</contributor><creatorcontrib>Guarnaccia, Claudio</creatorcontrib><creatorcontrib>Singh, Daljeet</creatorcontrib><creatorcontrib>Quartieri, Joseph</creatorcontrib><creatorcontrib>Nigam, S. P.</creatorcontrib><creatorcontrib>Kumar, Maneek</creatorcontrib><creatorcontrib>Mastorakis, Nikos E.</creatorcontrib><title>Honking noise contribution to road traffic noise prediction</title><title>AIP conference proceedings</title><description>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</description><subject>Intersections</subject><subject>Noise prediction</subject><subject>Traffic jams</subject><subject>Traffic models</subject><subject>Urban areas</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MtKxDAUBuAgCtbRhW9QcCd0zD0prmRwHGHAjYK7kOYiGbWpSSr49k6ZgjtXZ_Od_xx-AC4RXCLIyQ1aMkgZpfIIVIgx1AiO-DGoIGxpgyl5PQVnOe8gxK0QsgK3m9i_h_6t7mPIrjaxLyl0Ywmxr0usU9S2Lkl7H8xMhuRsMBM4Bydef2R3Mc8FeFnfP682zfbp4XF1t20GLGVpjBSeaoY7pA2kVkiBNNaYSOMJaTF2pCXEEkes7rDQhrkWcw5952XnhMdkAa4OuUOKX6PLRe3imPr9SYWhFIwxyNleXR9UNqHo6T81pPCp04_6jkkhNRejBuv_wwiqqcm_BfIL4CplEQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Guarnaccia, Claudio</creator><creator>Singh, Daljeet</creator><creator>Quartieri, Joseph</creator><creator>Nigam, S. P.</creator><creator>Kumar, Maneek</creator><creator>Mastorakis, Nikos E.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180727</creationdate><title>Honking noise contribution to road traffic noise prediction</title><author>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-c87f4a52b1ac04d7871a2a238cf33922e3933d3e3dab27ac5e92660fbf8be7f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Intersections</topic><topic>Noise prediction</topic><topic>Traffic jams</topic><topic>Traffic models</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guarnaccia, Claudio</creatorcontrib><creatorcontrib>Singh, Daljeet</creatorcontrib><creatorcontrib>Quartieri, Joseph</creatorcontrib><creatorcontrib>Nigam, S. P.</creatorcontrib><creatorcontrib>Kumar, Maneek</creatorcontrib><creatorcontrib>Mastorakis, Nikos E.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guarnaccia, Claudio</au><au>Singh, Daljeet</au><au>Quartieri, Joseph</au><au>Nigam, S. P.</au><au>Kumar, Maneek</au><au>Mastorakis, Nikos E.</au><au>Bardis, Nikos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Honking noise contribution to road traffic noise prediction</atitle><btitle>AIP conference proceedings</btitle><date>2018-07-27</date><risdate>2018</risdate><volume>1982</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5045448</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1982 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5045448 |
source | American Institute of Physics (AIP) Journals |
subjects | Intersections Noise prediction Traffic jams Traffic models Urban areas |
title | Honking noise contribution to road traffic noise prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Honking%20noise%20contribution%20to%20road%20traffic%20noise%20prediction&rft.btitle=AIP%20conference%20proceedings&rft.au=Guarnaccia,%20Claudio&rft.date=2018-07-27&rft.volume=1982&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5045448&rft_dat=%3Cproquest_scita%3E2087555065%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087555065&rft_id=info:pmid/&rfr_iscdi=true |