Honking noise contribution to road traffic noise prediction

The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honkin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guarnaccia, Claudio, Singh, Daljeet, Quartieri, Joseph, Nigam, S. P., Kumar, Maneek, Mastorakis, Nikos E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1982
creator Guarnaccia, Claudio
Singh, Daljeet
Quartieri, Joseph
Nigam, S. P.
Kumar, Maneek
Mastorakis, Nikos E.
description The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.
doi_str_mv 10.1063/1.5045448
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5045448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087555065</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-c87f4a52b1ac04d7871a2a238cf33922e3933d3e3dab27ac5e92660fbf8be7f23</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCtbRhW9QcCd0zD0prmRwHGHAjYK7kOYiGbWpSSr49k6ZgjtXZ_Od_xx-AC4RXCLIyQ1aMkgZpfIIVIgx1AiO-DGoIGxpgyl5PQVnOe8gxK0QsgK3m9i_h_6t7mPIrjaxLyl0Ywmxr0usU9S2Lkl7H8xMhuRsMBM4Bydef2R3Mc8FeFnfP682zfbp4XF1t20GLGVpjBSeaoY7pA2kVkiBNNaYSOMJaTF2pCXEEkes7rDQhrkWcw5952XnhMdkAa4OuUOKX6PLRe3imPr9SYWhFIwxyNleXR9UNqHo6T81pPCp04_6jkkhNRejBuv_wwiqqcm_BfIL4CplEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2087555065</pqid></control><display><type>conference_proceeding</type><title>Honking noise contribution to road traffic noise prediction</title><source>American Institute of Physics (AIP) Journals</source><creator>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E.</creator><contributor>Bardis, Nikos</contributor><creatorcontrib>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E. ; Bardis, Nikos</creatorcontrib><description>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5045448</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Intersections ; Noise prediction ; Traffic jams ; Traffic models ; Urban areas</subject><ispartof>AIP conference proceedings, 2018, Vol.1982 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5045448$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Bardis, Nikos</contributor><creatorcontrib>Guarnaccia, Claudio</creatorcontrib><creatorcontrib>Singh, Daljeet</creatorcontrib><creatorcontrib>Quartieri, Joseph</creatorcontrib><creatorcontrib>Nigam, S. P.</creatorcontrib><creatorcontrib>Kumar, Maneek</creatorcontrib><creatorcontrib>Mastorakis, Nikos E.</creatorcontrib><title>Honking noise contribution to road traffic noise prediction</title><title>AIP conference proceedings</title><description>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</description><subject>Intersections</subject><subject>Noise prediction</subject><subject>Traffic jams</subject><subject>Traffic models</subject><subject>Urban areas</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MtKxDAUBuAgCtbRhW9QcCd0zD0prmRwHGHAjYK7kOYiGbWpSSr49k6ZgjtXZ_Od_xx-AC4RXCLIyQ1aMkgZpfIIVIgx1AiO-DGoIGxpgyl5PQVnOe8gxK0QsgK3m9i_h_6t7mPIrjaxLyl0Ywmxr0usU9S2Lkl7H8xMhuRsMBM4Bydef2R3Mc8FeFnfP682zfbp4XF1t20GLGVpjBSeaoY7pA2kVkiBNNaYSOMJaTF2pCXEEkes7rDQhrkWcw5952XnhMdkAa4OuUOKX6PLRe3imPr9SYWhFIwxyNleXR9UNqHo6T81pPCp04_6jkkhNRejBuv_wwiqqcm_BfIL4CplEQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Guarnaccia, Claudio</creator><creator>Singh, Daljeet</creator><creator>Quartieri, Joseph</creator><creator>Nigam, S. P.</creator><creator>Kumar, Maneek</creator><creator>Mastorakis, Nikos E.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180727</creationdate><title>Honking noise contribution to road traffic noise prediction</title><author>Guarnaccia, Claudio ; Singh, Daljeet ; Quartieri, Joseph ; Nigam, S. P. ; Kumar, Maneek ; Mastorakis, Nikos E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-c87f4a52b1ac04d7871a2a238cf33922e3933d3e3dab27ac5e92660fbf8be7f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Intersections</topic><topic>Noise prediction</topic><topic>Traffic jams</topic><topic>Traffic models</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guarnaccia, Claudio</creatorcontrib><creatorcontrib>Singh, Daljeet</creatorcontrib><creatorcontrib>Quartieri, Joseph</creatorcontrib><creatorcontrib>Nigam, S. P.</creatorcontrib><creatorcontrib>Kumar, Maneek</creatorcontrib><creatorcontrib>Mastorakis, Nikos E.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guarnaccia, Claudio</au><au>Singh, Daljeet</au><au>Quartieri, Joseph</au><au>Nigam, S. P.</au><au>Kumar, Maneek</au><au>Mastorakis, Nikos E.</au><au>Bardis, Nikos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Honking noise contribution to road traffic noise prediction</atitle><btitle>AIP conference proceedings</btitle><date>2018-07-27</date><risdate>2018</risdate><volume>1982</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The implementation of Road Traffic Noise predictive Models (RTNMs) is crucial in order to be able to predict noise in urban areas strongly affected by vehicular traffic. These RTNMs can have in input a small or large number of inputs, according to the implemented function. Among these inputs, honking cannot be neglected in some specific areas in which drivers are used to horn in traffic jam or in proximity of intersections or other vehicles. In this paper, starting from a field measurement campaign in India, the authors highlight the shortcomings of standard RTNMs, that are not able to include random noisy events such as low or high pressure honking. Once the differences will be evaluated, the contribution of honking will be estimated and added to the predictions, to achieve a new model that is able to provide results in good agreement with field measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5045448</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1982 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5045448
source American Institute of Physics (AIP) Journals
subjects Intersections
Noise prediction
Traffic jams
Traffic models
Urban areas
title Honking noise contribution to road traffic noise prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Honking%20noise%20contribution%20to%20road%20traffic%20noise%20prediction&rft.btitle=AIP%20conference%20proceedings&rft.au=Guarnaccia,%20Claudio&rft.date=2018-07-27&rft.volume=1982&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5045448&rft_dat=%3Cproquest_scita%3E2087555065%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087555065&rft_id=info:pmid/&rfr_iscdi=true