Stress wave propagation and mitigation in two polymeric foams

This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (T < 1 µs) stress waves. Plate impact and electron beam irradiation experiments have been conducted to study their dynamic mechanical responses. Int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pradel, P., Malaise, F., de Rességuier, T., Delhomme, C., Cadilhon, B., Quessada, J. H., Le Blanc, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1979
creator Pradel, P.
Malaise, F.
de Rességuier, T.
Delhomme, C.
Cadilhon, B.
Quessada, J. H.
Le Blanc, G.
description This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (T < 1 µs) stress waves. Plate impact and electron beam irradiation experiments have been conducted to study their dynamic mechanical responses. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor and the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms of these polymeric foams. In the polyurethane foam, the pores were closed by elastic buckling of the matrix and damage of the cellular structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. A strain rate dependent compaction model successfully represents the macroscopic response of these polymeric foams.
doi_str_mv 10.1063/1.5044934
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5044934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087637798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2874e64107df0921f29ea33a07bf277f5fbfe5ed880422cedab57a4c49ce26683</originalsourceid><addsrcrecordid>eNp9kEtLAzEcxIMoWKsHv0HAm7D1n8fmcfAgxRcUPKjgLaS7iaR0N2uSVvrtbW3Bm6dh4MfMMAhdEpgQEOyGTGrgXDN-hEakrkklBRHHaASgeUU5-zhFZzkvAKiWUo3Q7WtJLmf8bdcODykO9tOWEHts-xZ3oYSDDT0u3xEPcbnpXAoN9tF2-RydeLvM7uKgY_T-cP82fapmL4_P07tZ1TCqSkWV5E5wArL1oCnxVDvLmAU591RKX_u5d7VrlQJOaeNaO6-l5Q3XjaNCKDZGV_vc7cKvlcvFLOIq9dtKQ0FJwaTUO-p6T-UmlN_ZZkihs2ljCJjdPYaYwz3_weuY_kAztJ79AHBvZao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2087637798</pqid></control><display><type>conference_proceeding</type><title>Stress wave propagation and mitigation in two polymeric foams</title><source>AIP Journals Complete</source><creator>Pradel, P. ; Malaise, F. ; de Rességuier, T. ; Delhomme, C. ; Cadilhon, B. ; Quessada, J. H. ; Le Blanc, G.</creator><contributor>Germann, Timothy C. ; Brown, Eric N. ; Lane, J. Matthew D. ; Knudson, Marcus D. ; Chau, Ricky ; Eggert, Jon H.</contributor><creatorcontrib>Pradel, P. ; Malaise, F. ; de Rességuier, T. ; Delhomme, C. ; Cadilhon, B. ; Quessada, J. H. ; Le Blanc, G. ; Germann, Timothy C. ; Brown, Eric N. ; Lane, J. Matthew D. ; Knudson, Marcus D. ; Chau, Ricky ; Eggert, Jon H.</creatorcontrib><description>This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (T &lt; 1 µs) stress waves. Plate impact and electron beam irradiation experiments have been conducted to study their dynamic mechanical responses. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor and the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms of these polymeric foams. In the polyurethane foam, the pores were closed by elastic buckling of the matrix and damage of the cellular structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. A strain rate dependent compaction model successfully represents the macroscopic response of these polymeric foams.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5044934</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cellular structure ; Elastic buckling ; Electron beams ; Electron irradiation ; Microspheres ; Plastic foam ; Plates (structural members) ; Polyurethane foam ; Propagation (polymerization) ; Static tests ; Strain rate ; Stress propagation ; Stress waves ; Structural damage ; Velocity measurement ; Wave propagation</subject><ispartof>AIP conference proceedings, 2018, Vol.1979 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2874e64107df0921f29ea33a07bf277f5fbfe5ed880422cedab57a4c49ce26683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5044934$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Germann, Timothy C.</contributor><contributor>Brown, Eric N.</contributor><contributor>Lane, J. Matthew D.</contributor><contributor>Knudson, Marcus D.</contributor><contributor>Chau, Ricky</contributor><contributor>Eggert, Jon H.</contributor><creatorcontrib>Pradel, P.</creatorcontrib><creatorcontrib>Malaise, F.</creatorcontrib><creatorcontrib>de Rességuier, T.</creatorcontrib><creatorcontrib>Delhomme, C.</creatorcontrib><creatorcontrib>Cadilhon, B.</creatorcontrib><creatorcontrib>Quessada, J. H.</creatorcontrib><creatorcontrib>Le Blanc, G.</creatorcontrib><title>Stress wave propagation and mitigation in two polymeric foams</title><title>AIP conference proceedings</title><description>This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (T &lt; 1 µs) stress waves. Plate impact and electron beam irradiation experiments have been conducted to study their dynamic mechanical responses. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor and the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms of these polymeric foams. In the polyurethane foam, the pores were closed by elastic buckling of the matrix and damage of the cellular structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. A strain rate dependent compaction model successfully represents the macroscopic response of these polymeric foams.</description><subject>Cellular structure</subject><subject>Elastic buckling</subject><subject>Electron beams</subject><subject>Electron irradiation</subject><subject>Microspheres</subject><subject>Plastic foam</subject><subject>Plates (structural members)</subject><subject>Polyurethane foam</subject><subject>Propagation (polymerization)</subject><subject>Static tests</subject><subject>Strain rate</subject><subject>Stress propagation</subject><subject>Stress waves</subject><subject>Structural damage</subject><subject>Velocity measurement</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEcxIMoWKsHv0HAm7D1n8fmcfAgxRcUPKjgLaS7iaR0N2uSVvrtbW3Bm6dh4MfMMAhdEpgQEOyGTGrgXDN-hEakrkklBRHHaASgeUU5-zhFZzkvAKiWUo3Q7WtJLmf8bdcODykO9tOWEHts-xZ3oYSDDT0u3xEPcbnpXAoN9tF2-RydeLvM7uKgY_T-cP82fapmL4_P07tZ1TCqSkWV5E5wArL1oCnxVDvLmAU591RKX_u5d7VrlQJOaeNaO6-l5Q3XjaNCKDZGV_vc7cKvlcvFLOIq9dtKQ0FJwaTUO-p6T-UmlN_ZZkihs2ljCJjdPYaYwz3_weuY_kAztJ79AHBvZao</recordid><startdate>20180703</startdate><enddate>20180703</enddate><creator>Pradel, P.</creator><creator>Malaise, F.</creator><creator>de Rességuier, T.</creator><creator>Delhomme, C.</creator><creator>Cadilhon, B.</creator><creator>Quessada, J. H.</creator><creator>Le Blanc, G.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180703</creationdate><title>Stress wave propagation and mitigation in two polymeric foams</title><author>Pradel, P. ; Malaise, F. ; de Rességuier, T. ; Delhomme, C. ; Cadilhon, B. ; Quessada, J. H. ; Le Blanc, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2874e64107df0921f29ea33a07bf277f5fbfe5ed880422cedab57a4c49ce26683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cellular structure</topic><topic>Elastic buckling</topic><topic>Electron beams</topic><topic>Electron irradiation</topic><topic>Microspheres</topic><topic>Plastic foam</topic><topic>Plates (structural members)</topic><topic>Polyurethane foam</topic><topic>Propagation (polymerization)</topic><topic>Static tests</topic><topic>Strain rate</topic><topic>Stress propagation</topic><topic>Stress waves</topic><topic>Structural damage</topic><topic>Velocity measurement</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradel, P.</creatorcontrib><creatorcontrib>Malaise, F.</creatorcontrib><creatorcontrib>de Rességuier, T.</creatorcontrib><creatorcontrib>Delhomme, C.</creatorcontrib><creatorcontrib>Cadilhon, B.</creatorcontrib><creatorcontrib>Quessada, J. H.</creatorcontrib><creatorcontrib>Le Blanc, G.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradel, P.</au><au>Malaise, F.</au><au>de Rességuier, T.</au><au>Delhomme, C.</au><au>Cadilhon, B.</au><au>Quessada, J. H.</au><au>Le Blanc, G.</au><au>Germann, Timothy C.</au><au>Brown, Eric N.</au><au>Lane, J. Matthew D.</au><au>Knudson, Marcus D.</au><au>Chau, Ricky</au><au>Eggert, Jon H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stress wave propagation and mitigation in two polymeric foams</atitle><btitle>AIP conference proceedings</btitle><date>2018-07-03</date><risdate>2018</risdate><volume>1979</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (T &lt; 1 µs) stress waves. Plate impact and electron beam irradiation experiments have been conducted to study their dynamic mechanical responses. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor and the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms of these polymeric foams. In the polyurethane foam, the pores were closed by elastic buckling of the matrix and damage of the cellular structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. A strain rate dependent compaction model successfully represents the macroscopic response of these polymeric foams.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5044934</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1979 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5044934
source AIP Journals Complete
subjects Cellular structure
Elastic buckling
Electron beams
Electron irradiation
Microspheres
Plastic foam
Plates (structural members)
Polyurethane foam
Propagation (polymerization)
Static tests
Strain rate
Stress propagation
Stress waves
Structural damage
Velocity measurement
Wave propagation
title Stress wave propagation and mitigation in two polymeric foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stress%20wave%20propagation%20and%20mitigation%20in%20two%20polymeric%20foams&rft.btitle=AIP%20conference%20proceedings&rft.au=Pradel,%20P.&rft.date=2018-07-03&rft.volume=1979&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5044934&rft_dat=%3Cproquest_scita%3E2087637798%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087637798&rft_id=info:pmid/&rfr_iscdi=true